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Abstract

Up to isomorphism, there is a unique connected semisimple algebraic group over Q
of Lie type I'4, with compact real points and split over Q,, for all primes p. Let Fy4 be
such a group. In this paper, we study the level one automorphic representations of Fy
in the spirit of the work of Chenevier, Renard and Taibi [ ; ; .

First, we give an explicit formula for the number of these representations having
any given archimedean component. For this, we study the automorphism group of
the two definite exceptional Jordan algebras of rank 27 over Z studied by Gross in
[ |, as well as the dimension of the invariants of these groups in all irreducible
representations of Fy(R).

Then, assuming standard conjectures by Arthur and Langlands for Fy | ;

|, we refine this counting by studying the contribution of the representations
whose global Arthur parameter has any possible image (or “Sato-Tate group”). This
includes a detailed description of all those images, as well as precise statements for the
Arthur’s multiplicity formula in each case. As a consequence, we obtain a conjectural
but explicit formula for the number of algebraic, cuspidal, level one automorphic rep-
resentation of GLgg over Q with Sato-Tate group F4(R) of any given weight (assumed
“Fy-regular”). The first example of such representations occurs in motivic weight 36.
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1 Introduction

1.1 (Galois representations with given image

The absolute Galois group Gal(Q/Q) encodes a lot of arithmetic information about
number fields, and a natural way to study Gal(Q/Q) is to consider its representations,
especially those arising from algebraic geometry. Motivated by the inverse Galois problem,
the following question has been studied by a lot of mathematicians:

Question 1. Let ¢ be a prime number and H a connected reductive algebraic group over Q.
Is there an (-adic Galois representation p : Gal(Q/Q) — H(Q,) such that it is semisimple
and geometric (in the sense of Fontaine-Mazur [ , Conjecture 1.1]), and its image is
Zariski dense in H(Qy)?

In the case H = GLy ~ GSp, or GSp,, or more generally, a (similitude) classical group,
there are many well-known constructions and examples. For instance, one can use the
Poincaré pairing on ¢-adic cohomologies of algebraic varieties to construct Galois represen-
tations with images in classical groups. The case of exceptional groups, i.e. groups with Lie
types Ga, Fy, Eg, E7 and Eg, is harder, but we still have some examples in | ; :

; ; ]. Notice that when H has Lie type Go or Eg, this question is
related to Serre’s question on motives | , Question 8.8, §1].

Composing Gal(Q/Q) — H(Q) with an irreducible faithful algebraic representation
H — GL,, we obtain an n-dimensional geometric ¢-adic representation. One can associate
two invariants with a geometric f-adic Galois representation p : Gal(Q/Q) — GL,(Q,): the
(Artin) conductor N(p) € N, and the Hodge- Tate weights HT(p), a multiset of n integers (see,
for example, [ |). In the aforementioned works, the conductors of the geometric ¢-adic
representations that they construct are usually not controlled. One may refine Question 1
naturally by fixing these two invariants:

Question 2. Let ¢ be a prime number, n > 1 and H a connected reductive subgroup of GL,
over Qg. What is the number (up to equivalence) of geometric (-adic Galois representations
p: Gal(Q/Q) — GL,(Qy) of given conductor and Hodge-Tate weights such that the Zariski
closure of Im(p) is H(Q,)?

For (H,n) = (GL2,2) or (SOg441,2¢g + 1), this question is for instance related to the
dimension of spaces of classical or Siegel modular forms. We have less knowledge of the
cases of other groups H. When the conductor N = 1, Question 2 is solved conjecturally by
Chenevier and Renard in | ] for the following groups (n is chosen to be the dimension
of the standard representation when H is a (similitude) classical group, and to be 7 when H
has type Go):

GLs ~ GSp,, GSp,, SOy4, SO5, GSpg, GSpg, SOg, G,

via the conjectural connection between n-dimensional geometric ¢-adic representations and
cuspidal automorphic representations of GL,,. See also | ; | for higher dimensions.



In | ], Lachaussée extends the results for GSp,,, 1 < g < 4 to the case of Artin conductor
N = 2. Now we concentrate on the case of conductor one (see Remark 1.6.4 for more
explanations about this conductor one assumption).

In this paper, following | ], we give a conjectural solution to Question 2 when N = 1,
H has Lie type Fy, and n = 26. For a 26-dimensional geometric ¢-adic Galois representation
p such that Im(p) has type Fy, its multiset of Hodge-Tate weights only depends on 4 variables
a,b,c,d € N, and has the form

HT(a, b, ¢, d) ::{ 0,0,+a,+b,£(a+b),£(b+c),£(a+b+c),£(b+c+d),L(a+b+c+d),£(a+ 2b+c), }

+(a+2b+ c+d), £(a+ 2b+ 2c+ d), +(a+ 3b + 2c + d), +(2a + 3b + 2¢ + d).
As a conjectural corollary of our results in this paper, we propose the following conjecture
on Fy-type geometric f-adic representations:

Conjecture A. The number of equivalence classes of 26-dimensional conductor one geo-
metric (-adic Galois representations p such that

o the Zariski closure of Im(p) is a connected reductive group of type Fy,
o and HT(p) = HT(a,b,¢,d), a,b,c,d > 1,

is Fy(a — 1,b — 1,¢ — 1,d — 1), where Fy()\) is the computable function on N* given by
Proposition 6.4.1.

Remark 1.1.1. The formula for F4(\) has so many terms that we will not write down the full
formula in this paper. However, under some hypothesis this formula becomes much simpler.
For instance, when a > b+ c+d+ 3, b,c,d > 0 and ¢, d are both odd, a short formula for
Fy(a,b,c,d) is given in Remark 6.4.2.

Ezample 1.1.2. Among quadruples (a, b, ¢, d) with nonzero Fy(a, b, ¢, d), there exists a unique
one (1,2,0,2) that has the smallest 2a+3b+2c+d (the largest Hodge-Tate weight). Moreover,
F4(1,2,0,2) = 1, so according to Conjecture A there should be a unique 26-dimensional
conductor one geometric ¢-adic representation p such that

e Im(p) has type Fy,
o and its multiset of Hodge-Tate weights HT(p) is:

HT(2,3,1,3) = {0,0,+2, £3, +4, 45, +6, +7, £9, +9, £12, +13, +16, +-18}.

For people preferring non-negative Hodge-Tate weights, one can twist p by w, 18 where
wy denotes the f-adic cyclotomic character of Gal(Q/Q), and obtain a representation with
motivic weight 36. Hence we expect a 26-dimensional geometric /-adic representation whose
Zariski image is the product of an Fy-type group with @X to appear in the 36th degree
(-adic cohomology of some algebraic variety. A very interesting open problem is to find such
a variety!

1.2 An automorphic variant of Question 2

Now we send Question 2 to the automorphic side. Let G be a connected reductive group
over Q with a reductive Z-model (see §2.2). As we will talk about Galois representations,
it will be convenient to assume that G is defined over Q, and we fix two embeddings:
loo : Q = C and ¢4 : Q — Q. We also fix a maximal compact subgroup G, of G(C).
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Let m be an L-algebraic ! level one automorphic representation of G. By a conjecture
of Buzzard and Gee | , Conjecture 3.2.1], one should be able to associate with 7 a
compatible conductor one geometric f-adic representation p,, : Gal(Q/Q) — @(@), which
depends on the choice of embeddings ¢ = (i, t¢). By the standard conjectures of Fontaine-
Mazur and Langlands, every conductor one geometric ¢-adic representation into G (Q,) should
arise in this way. If any two element-conjugate homomorphisms from a connected compact
Lie group into G. are conjugate (see §4.1 for a detailed explanation), the following question
gives an automorphic variant of Question 2 for H = G X1, Qy:

Question 3. Let G be a connected reductive group over Q admitting a reductive Z-model.

(1) (Counting) Count the number (up to equivalence) of level one algebraic * discrete
automorphic representations for G with an arbitrary given archimedean component.

(2) (Refinement) Refine this counting by “Sato-Tate groups” of automorphic representa-
tions.

Remark 1.2.1 (“Sato-Tate groups”). In the above question, the “Sato-Tate group” H(7w) of
a level one automorphic representation m for G is a certain conjugacy class of subgroups of
G, that we will explain carefully in §5.3.1, and we can briefly introduce it as follows. Based
on Arthur’s parametrization of automorphic representations, one can conjecturally associate
with 7 a group homomorphism

Un: £z % SU(2) = G,

where Ly is the hypothetical Langlands group, which is connected and compact (see §5.3).
We define H() to be the conjugacy class of the image of ¢, in G.. When the restriction of
¥ to 1 x SU(2) C Lz x SU(2) is trivial, this notion H(7) coincides with the usual notion of
Sato-Tate groups. In general, we decided to include the SU(2) factor in the definition as it
provides convenience for stating some of our results.

The point of the refinement part in Question 3 is that in general many level one discrete
automorphic representations 7 for GG, for example the endoscopic ones, will have a Sato-Tate
group strictly smaller than G,. For these 7, Im(p,,) should be a proper subgroup of G(Qy).
Hence we have to find a way to exclude these representations to obtain the desired number
in Question 2.

In | ], Chenevier and Renard solve the part (1) of Question 3 for a number of classical
groups of small ranks, namely, GG is one of the following groups:

SLQ = sz, Sp4, 80272, SO372, 807, SOg and S()g7

and also for a connected semisimple Q-group of type G, with compact real points. For the
part (2) of Question 3, their method relies in an important way on Arthur’s classification
of automorphic representations [ : ]. Their results for SO7, SOg, SOg and G, are
conditional to Arthur’s conjectures for these groups, since SO7, SOg and SOg are not quasi-
split, and Gy is not covered by Arthur’s results. In | ], Taibi uses Arthur’s L2-Lefschetz

!For the definition of L-algebraicity, see [ , Definition 2.3.1]. For a representation which is algebraic

in the sense of Definition 5.4.3 but not L-algebraic, one should replace G by some “similitude” group.
20ne can remove this algebraicity condition by restricting to semisimple Q-groups.
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formula to make these results unconditional (except for Gy) and he also extends them to the
following split classical groups:

Sp2g with ¢ <7, SO,41, with n < 8 and SOg, 2, With m < 4.

In particular, Taibi’s solution to Question 3 for Spg will be important in our work.

In this paper, we apply the method of [ | to Fy, the unique (up to isomorphism)
connected semisimple algebraic group over Q of type Fy, with compact real points and split
over Q, for every prime p. The construction of Fy is explicitly given in §2.1. For this
group, automorphic representations are automatically L-algebraic. Moreover, it turns our
that there is no local-global conjugacy problems for connected subgroups of (Fy). = F4(R)
(see Proposition 4.1.5). As a consequence, Conjecture A follows from standard conjectures
and our result on automorphic representations (Theorem F).

Remark 1.2.2. The automorphic representations for F, (and their local components) have
been studied in | ; ; ; ; | via exceptional theta correspondences,
and we will explain some links between these correspondences with our work in §6.5. Let us
mention also that automorphic representations for F4 have also been studied in the past by
Seth Padowitz in | , §9]. Padowitz rather considers the automorphic representations
which are Steinberg at a fixed non-empty set of primes and unramified elsewhere, and tries
to enumerate them using the stable trace formula, in the spirit of works of Gross-Pollack
[ ]. The results are only partial, as several stable local orbital integrals there are not
determined 2, and we hope to go back to this question in the future.

1.3 Counting level one automorphic representations

In [ |, Gross proves the following result for Fy, which is important in our solution
to the part (1) of Question 3 for F:

Theorem B. (Proposition 2.3.5) Up to Z-isomorphism, there are two smooth affine group
schemes over Z with generic fiber isomorphic to ¥y, whose special fiber over 7/ pZ is reductive
for all primes p.

The Z-group schemes in Theorem B are reductive Z-models of F4. Their constructions
are related to integral structures of the 27-dimensional definite exceptional Jordan algebra
over Q. Gross proves this result via the mass formula for F, and some results in | ],
and we will give a new proof in §2.3 without using | ].

In our proof of Theorem B, we study the Z-points of two reductive Z-models in The-
orem B, which are finite groups inside the compact Lie group F4(R). With the help of
[ ] and [ ], for each of these finite groups, we give an explicit set of generators
in §3.2 and enumerate its conjugacy classes in §3.3.

Since the method of counting in | ] can be applied to any algebraic Q-group that
has compact real points and admits a reductive Z-model, we recall and apply this method
to Fy in §3.1, §3.4 and §3.5. This formula leads to the answer for the part (1) of Question 3
in the case of Fy, which is also the main computational result in this paper:

3 Another minor problem is that the author asserts on | , P.42] that the 26-dimensional irreducible
representation of Fy is “excellent” in his sense, which is not correct. See Remark 3.5.5 for a conterexample.



Theorem C. (Theorem 3.6.1 and Corollary 5.1.8) (1) For an irreducible representation Vy
of F4(R) with highest weight \, we have an explicit and computable formula for the number
d(\) of equivalence classes of level one automorphic representations m with T == V).

(2) For dominant weights A = Zle Nwoit satisfying 221 + 3o + 2X3 + Ny < 13, we list
the numbers d(\) in Table 6, Appendiz A.

1.4 Candidates for Sato-Tate groups

The part (2) of Question 3 involves a classification of all possible Sato-Tate groups for
level one automorphic representations of F,. For this Q-group, its Langlands dual group f‘z
is isomorphic to F4 X C, and as mentioned in Remark 1.2.1, Sato-Tate groups in this case
are conjugacy classes of subgroups of the compact Lie group F4(R). The following result
gives us 13 candidates for Sato-Tate groups strictly smaller than Fy(R):

Theorem D. (Theorem 4.6.7) There are 13 conjugacy classes of proper connected subgroups
H of F4(R) such that:

o the centralizer of H in F4(R) is isomorphic to the product of finitely many copies of
7)27;

o the zero weight appears twice in the restriction of the 26-dimensional irreducible rep-
resentation of F4(R) to H.

We prove this classification result step by step in §4.3, §4.4, §4.5 and §4.6, following
Dynkin’s strategy in | |. It is worth mentioning two important ingredients in the proof:

+ A local-global conjugacy result (Proposition 4.1.5) for F4(R), which we have already
mentioned in the end of §1.2. This relies on a result about Lie algebras (Theorem 4.1.3)
proved by Losev in | ].

o A useful criterion (Proposition 4.2.1) given in §4.2 for the conjugacy of two homomor-
phisms from a connected compact Lie group into Fy(R).

Ezxample 1.4.1. Among the conjugacy classes of subgroups classified in Theorem D, we have
Spin(9), Spin(8), Gz x SO(3), (Sp(3) x SU(2)) /uz', (Sp(2) x SU(2) x SU(2)) /u3',

where the notations will be explained in Notation 4.3.1 and Notation 4.3.3. The remaining
subgroups are all centrally isogenous to products of n copies of SU(2), n < 4. Note that
among the subgroups listed above, only Spin(9) and (Sp(3) x SU(2)) /u5* are maximal proper
connected regular subgroups of Fy(R).

1.5 Arthur’s conjectures

Asin [ ], for the part (2) of Question 3, we need some conjectures on automorphic
representations. For a connected reductive algebraic group G over Q, Arthur introduces in
[ | a conjectural parametrization of discrete automorphic representations, via discrete

4Here we follow the notations in | , §IV.4.9].



global Arthur parameters for G. In the level one case, these parameters are G (C)-conjugacy
classes of admissible morphisms

¥ Lz x SLy(C) = G(C),

where Ly is the hypothetical Langlands group of Z (see §5.3 for more details), and G is the
Langlands dual group of G. Arthur proposes a conjectural formula for the multiplicity of an
irreducible G(A)-representation in the discrete automorphic spectrum of G, in terms of the
associated global Arthur parameters.

In | |, Arthur reformulates his conjectures for any quasi-split classical group G,
avoiding the appearance of the hypothetical Langlands group £. In this case, he relates the
global Arthur parameters for G to cuspidal automorphic representations of linear groups,
and proves the endoscopic classifications, relying in particular on the works of Moaeglin-
Waldspurger [ |, Ngb | | and many others. We refer to | , §8] for precise
statements of Arthur’s results in | | in the case of level one cohomological automorphic
representations of classical groups.

Of course Fy is not a classical group, and Arthur’s general conjectures | | are still
open in this case. Nevertheless, they can still be formulated quite precisely if we admit the
existence of Lz. See also [ , §6.4] for some generalities of Arthur’s conjectures in the
level one case.

Notation 1.5.1. In the rest of this paper, we will mark any result conditional to the existence
of Lz and Arthur’s multiplicity formula (Conjecture 5.6.5) with a star x.

Now we briefly explain Arthur’s conjectures for Fy. For a level one automorphic represen-
tation 7w of Fy with global Arthur parameter ¢ : £z X SLy(C) — F4(C), we may compose 1)
with the 26-dimensional irreducible representation r : F4(C) — GLgg(C) °, and thus obtain
a representation of Lz X SLy(C). This representation is decomposed as:

ro ~mldi] @ --- D m[dil, (%)

where 7; is an n;-dimensional irreducible representation of £z and [d;] stands for the ir-
reducible d;-dimensional representation of SLy(C), and Zle n;d; = 26. We identify 7; as
a level one cuspidal representations of PGL,,, and observe that it is always self-dual and
algebraic in this case (see §5.4). In a similar way as in | ], we view the global Arthur
parameter 1 as a linear combination of m;[d;]’s.

In §6.1, we derive from Theorem D that the Sato-Tate group of any 7; appearing in the
decomposition (%) is one of the following compact Lie groups:

SU(2), Sp(2), Sp(3), SO(8), SO(9), Ga, F4(R). (%x)

Cuspidal representations with Sato-Tate group F4(R) conjecturally correspond to the desired
(-adic representations in Question 2, and those with other Sato-Tate groups in (xx) are related
to level one automorphic representations for the following Q-groups:

PGL27 803,27 SO77 8087 Sp87 G27

°The image of r is even inside SO26(C) C SLag(C) C GLag(C).




which have already been studied in | ; ; .

Conversely, for a global Arthur parameter 1 : LZ X SLy(C) — F4(C) whose “archimedean
component” is an Adams-Johnson parameter (see Definition 5.6.1 and Remark 5.6.2), the
multiplicity of its corresponding irreducible F4(A)-representation 7 in the automorphic spec-
trum can be calculated via Arthur’s formula in | ]. In the level one case, this formula
involves two characters on the centralizer C, of Im(¢)) in F4(C), which is an elementary
abelian 2-group. The first character is Arthur’s character ¢,, and we will recall its definition
in §5.6.2. The second character is a local character at the archimedean place, an explicit
formula for which will be given in §6.2.

1.6 Refinement of the counting

With all these preparations, we are ready to refine the counting in Theorem C. For a
global Arthur parameter ¢ : L7 X SLy(C) — F4(C), one can associate two invariants:

o its Sato-Tate group H(v)) := ¢(Lz x SU(2)), viewed as a conjugacy of subgroups in
the compact group Fy(R);

o its “weights”, i.e. eigenvalues of its infinitesimal character under the 26-dimensional
irreducible representation r : Fy — SLog.

Given any conjugacy class of proper subgroups H of F4(R) classified in Theorem D, in
§6.3 we classify all the possible decompositions () of r o ¢ for global Arthur parameters 1
with H(¢)) = H. If ¥ corresponds to an irreducible level one F,(A)-representation =, an
important part of our work is to give an exact formula for the multiplicity of 7, for each case
of Sato-Tate groups. Roughly speaking, the multiplicity depends on how the weights of
are distributed in the summands m;[d;]’s of (x). In conclusion, we have the following result:

Theorem* E. (Theorem 6.3.1)

(a) The Sato-Tate group of a level one automorphic representation for Fy is either Fy(R)
or one of the proper subgroups of F4(R) classified in Theorem D except Spin(8).

(b) For global Arthur parameters of ¥4 with a given Sato-Tate group, the multiplicity of
its corresponding irreducible level one F4(A)-representation (0 or 1) is given explicitly
by the formulas in Proposition 6.3.4 to Proposition 6.3.18.

Remark 1.6.1. We observe that not all subgroups in Theorem D come from endoscopic groups
of Fy, in the sense of | |. For example, the subgroup G x SO(3) has trivial centralizer in
F4(R), thus it can not be the centralizer of any element in F4(R). As a result, our conjectural
refinement is finer than Arthur’s endoscopic classification in | ]-

Given an irreducible representation V) of Fy(R), from Theorem C we know the number
of equivalence classes of level one automorphic representations 7 for Fy with 7o, >~ V,. The
weights of the global Arthur parameter ¢, of 7 are determined by V,. We can enumerate
all the possible global Arthur parameters with these weights, and then use the multiplicity
formulas in Theorem E to determine their multiplicities. In this way, we obtain a conjectural
refinement of the counting in Theorem C.

Example 1.6.2. In Table 9 and Table 10, we list some parameters with “small” archimedean
components. For example, there are two different level one automorphic representations of
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F, with trivial archimedean components, whose Arthur parameters are:
9] @ [17] and Aq41[6] @ [5] & [9].

The first parameter corresponds to the trivial representation, and its Sato-Tate group ¢ is
the principal SU(2) in Fy(R). The Sato-Tate group of the second parameter is isomorphic
to (SU(2) x SU(2)) /us 7, the information about which can be found in §6.3.2. The Hecke
eigenvalues of its corresponding automorphic representation for F, are thus related to the
Fourier coefficients of Ramanujan’s A function, i.e. the unique level one classical cuspidal
modular form with weight 11.

As a consequence of Theorem E; we obtain a conjectural solution to Question 2, stated
in terms of automorphic representations:

Theorem* F. (Proposition 6.4.1 and Proposition 6.4.3) The number of algebraic, cuspidal,
level one automorphic representations of GlLog over Q satisfying:

o the Sato-Tate group is F4(R),
e and the multiset of weights ® is HT (a,b,c,d) for a,b,c,d > 1,

is Fyla — 1,b—1,c— 1,d — 1), where F4()\) is an explicit function on N* given by Proposi-
tion 6.4.1.

Example 1.6.3. The quadruples (a, b, ¢, d) € N* such that

o the largest weight 2a + 3b + 2¢ + d + 8 in the multiset HT(a + 1,0+ 1,c+1,d + 1) is
not larger than 22,
e and Fy(a,b,c,d) # 0,

are listed in Table 11, Appendix A. We also list the values of F4(a, b, ¢, d) for these quadruples.
As a direct consequence, we predict the existence of the geometric f-adic representation in
Example 1.1.2.

Remark 1.6.4. One may want to remove the level one condition, like in [ |. For the
part (1) of Question 3 for F4, one can calculate the dimension of invariants under other
congruence subgroups, and obtain results similar to Theorem C for higher levels. However,
for the part (2) of Question 3 for Fy, what we use is a simplified version of Arthur’s recipe
in | ]. When allowing ramifications at some finite place p, one needs some properties of
local Arthur packets for F4(Q,), which are still unknown to us.

Let us end the introduction with a short summary of the contents of this paper. In
§2, we recall the definition of F, and some results of Gross | | on reductive Z-models
of Fy. We also give a new proof for Theorem B. We prove Theorem C in §3. In §4, we
study the subgroups of the compact Lie group F4(R) and prove Theorem D. In §5, we
recall the theory of level one automorphic representations and the conjectures by Arthur

6 As we mentioned in Remark 1.2.1, the notion of Sato-Tate groups in the introduction coincides with the
usual notion if and only if the restriction of the global Arthur parameter to SLo(C) is trivial. Here these two
Arthur parameters fail to satisfy this condition.

"Beware that there are many distinct conjugacy classes of subgroups of F4(R) isomorphic to SU(2).

8See §5.4 for the precise definition of weights for an algebraic cuspidal level one automorphic representation
of GL,,.



and Langlands, mainly following | ; ]. Then we apply these conjectures to Fy and
prove Theorem E and Theorem F in §6.3. In Appendix A, some figures and tables used in
this article are provided.
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2 The compact Lie group F, and its reductive integral
models

In this section we introduce the compact Lie group of type F, that we will discuss in this
paper, and give a classification of its reductive Z-models.

2.1 The compact group F; and its rational structure

To construct Lie groups of exceptional types, we need to recall the notion of octonions,
and our main reference is | , §5].

Definition 2.1.1. An octonion algebra C over a field k is a non-associative k-algebra of k-
dimension 8 with 2-sided identity element e such that there exists a non-degenerate quadratic
form N on C satisfying N(zy) = N(z)N(y),x,y € C. The quadratic form N is referred as
the norm on C.

When considering octonion algebras over R, we have the following classification result:

Proposition 2.1.2. [ , Theorem 15.1] Up to R-algebra isomorphism, there is a unique
octonion algebra Qg over R whose norm N is positive definite, which is named as the real
octonion division algebra.

The multiplication law Qg x Qg — O can be given as follows: as a vector space Oy
admits a basis {e,eq,...,er} such that e is the identity element and as an R-algebra Of is
generated by {ey,...,er} subject to the relations

o for all i, 2 = —e;

« considering the subscripts as elements in Z/7Z, the subspace of Qg generated by

{e,e;,€,11,€i43} is an associative algebra with relations

2 2 2
€ = €41 = €43 = —6€,€€y1 = —€;41€; = €;43.

We identify the real numbers R with the subalgebra Re of O and the identity element of
Ogr will be denoted as 1. Now we recall some basic properties of Og, for which we refer to
[ , §5]. There is an anti-involution of algebra x +— T called the conjugation on Ok,
defined by 1 =1 and & = —e; for each i. The trace and norm on Qg are defined as:

Tr(z) =247, N(z)=2z-T=T-x.
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The multiplication law on Ok implies that
Tr(zy) = Tr(yx) = Tr(z - ) for all 2,y € Ok. (2.1)

7

For an element © = xy + Z z:¢; € O, its norm N(z) equals .7 22, from which we can

zOl’

see that N is a positive deﬁmte quadratic form. Its associated symmetric bilinear form is
(z,y) =N(z+y) = N(@@)-N{y)=z-7+y-7=Tr(z 7).
Although the multiplication law of Qg is not associative, it is still trace-associative in
the sense that
Tr((x-y)-2z) =Tr(xz- (y-2)) for all z,y, z € O,

and we can define Tr(zyz) == Tr((z - y) - 2) = Tr(z - (y - 2)).
For our construction, we still have to recall the exceptional Jordan algebra, following

[ , §6]:

Definition 2.1.3. The (positive definite) real exceptional Jordan algebra, denoted by Jg,
is the 27-dimensional R-vector space consisting of “Hermitian” matrices in M3(Og), i.e.
matrices of the form

> a,b,cE]R, l’,y,ZG@R,

< v 2
] oW
o8 <

equipped with the R-bilinear multiplication law
1
Jp X Jp — JR,A oB:= §(AB + BA),

where AB and BA denote the usual product of octonionic matrices, and with 2-sided identity
element I given by the standard matrix identity element diag(1,1,1).

As an R-algebra, Jg is commutative but not associative.

Notation 2.1.4. To compress the space, when we do not need to emphasize the matrix
structure of elements in Jg, we denote the element

’ a,b,CER, l’,y,ZG@R

NSRRI =
8 o w
o 8wl

by [a,b,c;x,y, z] for short.

The trace of A = [a,b,c;x,y, 2] € Jg is defined as Tr(A) := a + b+ ¢. The underlying
vector space of Jgr is equipped with the non-degenerate positive definite quadratic form:

Q(A) :==Tr(Ao A)/2 = %(aQ +b* + ¢*) + N(z) + N(y) + N(2). (2.2)
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Its associated bilinear form is Bo(A, B) == Q(A + B) — Q(A) — Q(B) = Tr(Ao B). The
determinant of the matrix A is defined by

det(A) := abc + Tr(zyz) — aN(z) — bN(y) — cN(2). (2.3)

It defines a cubic form on Jg.

We denote by Fj the subgroup Aut(Jg,o) of GL(Jg) consisting of elements g € GL(Jg)
such that for all A, B € Jg, g(Ao B) = g(A) o g(B). Tt is a compact Lie group of type F,
[ , Theorem 16.7].

In this paper, we deal with automorphic forms so we want a reductive group over Q whose
real points is isomorphic to Fy. For this purpose, we first define the following Q-algebras:

Definition 2.1.5. Cayley’s definite octonion algebra Qg is the sub-Q-algebra of Og gen-
erated by {ei,...,er}. The (positive definite) rational exceptional Jordan algebra Jg is the
sub-Q-space of Jr consisting of [a,b,c;x,y,2],a,b,c € Q,x,y,2 € Qg equipped with the
multiplication o.

The main object considered in this paper is the following algebraic group:

Definition 2.1.6. We define F to be the closed subgroup of the algebraic Q-group GLj,,
which as a functor sends a commutative unital Q-algebra R to the group

Fi(R) == Aut(Jg®q R,0) = {9 € GL(Jg®g R) | g(Ao B) = g(A)og(B),VA,B € Jg®q R}.

From the definition we have Fy(R) = F4. By | , Theorem 7.2.1], Fy4 is a semisimple
and simply-connected group over Q.

Remark 2.1.7. We have an alternative description of F4 that we will use later: the closed sub-
group Aut Jo.det,1)/@ Of GLj, consisting of linear automorphisms that preserve both the cubic
form det and the identity element I. The closed subgroups Fy = Aut, Jg,0)/Q and Aut Jg,det,])/Q
inside GLj, are both smooth and they have the same geometric points according to | ,
Proposition 5.9.4], so they coincide.

2.2 Reductive Z-models of reductive Q-groups

Now we recall some results in | ; |. In this subsection, let G' be a connected

reductive algebraic group over Q. Denote the product Hp Ly, by 7 and let Ay = Z ®z Q be
the ring of finite adeles, and A =R x Ay.

Definition 2.2.1. A reductive Z-model of G is a pair (¢, ) consisting of:

« an affine smooth group scheme ¢ of finite type over Z such that ¢ ®;7Z/pZ is reductive
over Z/pZ for each prime number p,
e an isomorphism ¢ : ¢ ®; Q ~ G of algebraic groups over Q.

Two reductive Z-models (4;,¢1) and (%, t2) are said to be isomorphic if there exists an
isomorphism f : ¥4 — % over Z such that the following diagram commutes:

% ®zQ fo » % ®7Q

12



Remark 2.2.2. When there is no confusion about ¢, we simply say that ¢ is a reductive

Z-model of G.

From the theory of Chevalley groups in | , §XXV], every group G split over Q admits
a reductive Z-model. Indeed, we can take the Chevalley group with the same root datum of
G to be its reductive Z-model.

When G is not split, in general the existence of reductive Z-models of G is no longer
ensured. Now we consider the case when G is anisotropic, i.e. G does not contain any
non-trivial split Q-torus. When G has a reductive Z-model, being anisotropic is equivalent
to that G(R) is compact, which is due to | , Theorem 5.5(1)] and [ , Proposition
2.1]. In | , §1], Gross proves the following result:

Theorem 2.2.3. Let G be an anisotropic semisimple simply-connected Q-group such that
the root system of Gc¢ is irreducible, then G admits a reductive Z-model if and only if the
Lie type of G is among:

B(d—l)/2 (d = +0mod 8), Dd/g (d = 1 mod 8), GQ, F47 Eg.

The next question is to classify reductive Z-models of a given anisotropic group G up to
some equivalence relation.

Definition 2.2.4. Let (¢,id) be a reductive Z-model of its generic fiber G := ¥ ®; Q. A
reductive Z-model (¢’,/) of G is said to be in the same genus as ¢, if //(¥4'(Z)) and ¥ (Z)
are conjugate in G(Ay).

Remark 2.2.5. This condition is equivalent to that for each prime p, //(4'(Z,)) is conjugate
to Y(Z,) in G(Q,), and (4" (Z,)) = 9 (Z,) for almost all p.

By | , Proposition 1.4], the equivalence classes of reductive Z-models in the genus
of & can be identified with the coset space G(Ay)/¥Y(Z).
The group G(Q) acts on reductive Z-models in the genus of 4 by the formula:

9(', /) = (¢, ad(g) o V),

where ad(g) is the conjugation by g. This induces an action of G(Q) on the equivalence
classes of reductive Z-models in the genus of 4. We say two reductive Z-models in the genus
of 4 are G(Q)-conjugate if their equivalence classes are in the same G(Q)-orbit.

Now the set of G(Q)-orbits on the equivalence classes of reductive Z-models in the genus
of ¢ can be identified with the double coset space G(Q)\G(Ay)/¥ (Z), which is finite by
Borel’s famous result | ].

2.3 Reductive Z-models of F,

For our Q-group Fy, the Fy(Q)-orbits of equivalence classes of reductive Z-models of F,
in some genus is determined by Gross in | , Proposition 5.3], using the mass formula
[ , Proposition 2.2]. In this subsection we provide an alternative proof for his result,
which will be helpful for our computations in §3.
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2.3.1 Integral structures of Og and Jg

Parallel to the construction of Fy in §2.1, we want to define integral structures of Og
and Jg and then use them to construct reductive Z-models of Fy.

Definition 2.3.1. Cogzeter’s integral order Q is the Z-lattice of rank 8 inside Og spanned
by the lattice Z @ Ze; @ - - - @ Ze; and the four elements

hy=(1+e +e+es)/2,hy=(1+e +e3+er)/2,
hy = (1+e;+e5+e6)/2,hy = (e1 +e2+e3+e5)/2,

equipped with the multiplication of Qg. This lattice contains the identity element of Qg
and is stable under the multiplication, i.e. is an order in Q.

Remark 2.3.2. The underlying lattice of Q7 equipped with the quadratic form N|g, is iso-
metric to the even unimodular lattice

Egs = {(ZL’I) € Z8U (Z+ %)8

in50m0d2}.

Let Jz be the lattice
{la,b,c;x,y,2) € Jgla,b,c € Z,x,y,z € Oy}

of rank 27 inside the Q-vector space Jg. This lattice is stable under the Jordan multiplication
o on Jg, thus Jz is an order in Jg.

As in Remark 2.1.7, the Q-group F4 coincides with the group Autj, det1)/0- The triple
(Jg,det,I) has a natural integral structure (Jz,det,I). The Z-group scheme Aut(y, dget.1)/z,
sending any commutative Z-algebra R to the subgroup of GL(J;®z R) consisting of elements
preserve the cubic form det and the identity element I, is expected to be a reductive Z-model
of Fy, but we are going to consider the Z-group scheme Autj, qet,e)/z for any e € Jz satisfying
certain conditions, in order to produce several reductive Z-models of F4 uniformly.

Definition 2.3.3. An element

A= € Jr

NSRS
8 oW
o8 <

is said to be positive definite if its seven “minor determinants”
a,b,c,ab — N(z),bc — N(x),ca — N(y),det(A) € R
are all positive. A positive definite element e in Jg with dete = 1 is called a polarization.

Given a polarization e contained in the lattice Jz, one constructs a Z-group scheme
Fue = Aut(y, det,e)/z in the same way as Aut(y, get1)/z- The following result shows that this
group scheme is a reductive Z-model of Fy.
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Proposition 2.3.4. | , Proposition 6.6, Example 6.7] For any choice of polarization
e € Jz, the fiber Fy . ®z Z/pZ is semisimple for every prime number p, and Fy.(R) is a
compact Lie group of type Fy.

Taking e to be the identity element I, the generic fiber of Fy1 is Aut(y, det,1)/0 = Fa, thus
JF41 is a reductive Z-model of F.
If we take e to be

1
E:= [27272;ﬁ7ﬁ75]7ﬁz5(_1+61+62+"'+€7) EJZ,

as in | , (5.4)], by [ , Example 6.7] the generic fiber of F, i is isomorphic to Fy.

We denote the natural isomorphism F; g ®z Q — F4 by ¢. Actually ¢ can be given as the

conjugation by an element in the Q-points of the Q-group Aut j, det)/@ Which sends E to 1.
In | , Proposition 5.3], Gross proves the following result:

Proposition 2.3.5. There are two F4(Q)-orbits on the equivalence classes of reductive Z-
models of Fy in the genus of Fy1, whose representatives are given by (Fa1,id) and (Fig,t)
respectively.

Applying the mass formula | , Proposition 2.2] to Fy, we have
1 1 691
= —((—1)C(=5)C(=T)¢(—11) = 24

where (¢, ) varies over the F(Q)-conjugacy classes of reductive Z-models of F, in the genus
of Fy1. As

691 B 1 n 1
215.36.52.72.13  215.36.52.7  212.35.72.13’
in order to prove Proposition 2.3.5 it suffices to prove the following two things:

(2.5)

o J41and Fy g are not Fy(Q)-conjugate.
. |3'~4,1(Z)| < 215.36.52.7 and ’?4,E(Z)| < 9212.35.72.13,

In his proof, Gross cites some results from [ ], We are going to give another proof of
Proposition 2.3.5, which avoids using results in | ].

2.3.2 F,5(Z)
Now we deal with the finite group F, g(Z). Our goal is to prove:
Proposition 2.3.6. |F,5(Z)| < 2'2-3°. 7213,
With the choice of polarization E, we can define a new bilinear form on Jg:
(A,B)g = (A,E,E)(B,E,E) — 2(A, B,E),
where the trilinear form ( , , ) : J§ = Q is defined by

(A, B,C) :%[det(A + B+ C)—det(A+ B) —det(B + C) — det(C + A)
+ det(A) + det(B) + det(C)].

This bilinear form is positive definite and integral on Jz by | , Proposition 7.2].
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Notation 2.3.7. Here we give some notations for elements in Jg: we write
E;:=[1,0,0;0,0,0],Es :=[0,1,0;0,0,0],E3 :=[0,0,1;0,0,0]
and for any x € Ok,
Fi(z) :==10,0,0;z,0,0],Fy(z) :=[0,0,0;0,z,0],F3(z) :=[0,0,0;0,0, z].

Note that 1,eq,es,e3,hy, hy, hs, hy is a basis of the lattice Oz, thus we have the following
basis of Jz:

3= ( P12 B2 B F1 (1), Fa(o1), Fa(ea), Fa es), Fa (o (26)

1), F1(h2),F1(h3), F1(hg), F2(1), F2(e1), F2(e2), )
(e3),F2(h1), Fa(h2), F2(hs), F2(ha), F3(1), Fs(e ‘

1), Fa(e2),F3(e3),F3(h1),F3(h2),F3(h3),F3(hs)

In the basis B, we give the Gram matrix of the quadratic lattice (Jz, (, )g) in Figure 1,
Appendix A.

Proof of Proposition 2.3.6. Each element in Fy g(Z) = Aut(Jz, det, E) preserves the bilinear
form ( , )g by the definition, thus this finite group is a subgroup of the isometry group
O(Jz, (, )r) of the quadratic lattice (Jz, (, )r).

The order of O(Jz,( , )r) can be determined with the help of the Plesken-Souvignier

algorithm. Concretely, we can apply the qfauto function in | | to the Gram matrix
Figure 1 of (Jz,(, )r), and we find

0(Jz, (, Yg)| =2"-3%.7%.13.

Notice that the isometry group contains an involution —id, which does not fix E, thus
we have

1
Fan(@)] < 51000z, (, Je) =27 8713
]

Remark 2.3.8. The orthogonal complement of E in (Jz, ( , )g) is a 26-dimensional even lattice
of determinant 3 and with no roots [ , Proposition 7.2]. In Borcherds’ thesis | :
§5.7], he proves that a lattice satisfying these conditions is unique up to isomorphism and
calculates the order of its isometry group, giving another proof of Proposition 2.3.6.

Furthermore, the gfauto function also give us a set of generators {—id,—oy,0,} of
O(Jz, (, )r), where the matrices of 0,05 in the basis B (2.6) are given in Figure 2, Ap-
pendix A. Here we write —o; instead of o; because the second element in the result given
by | | sends E to —E. The isometry group O(Jz,( , )g) is the direct product of
the subgroup generated by oi,09 and the order 2 central subgroup +id. In the proof of
Proposition 2.3.6, we find that F4g(Z) is a subgroup of the group (o4, 03).

In the basis B, the cubic form det on Jg can be written down as a 27-variable polynomial
of degree 3, and we give this polynomial function as MatDet in our | | program
[Sha]. Using | |, we verify that o, and oy both preserve the cubic form det and the
element E, thus ¥, 5(Z) and the group (o1, 039) coincide and |Fyg(Z)] = 2'%- 3% - 7% 13.
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2.3.3 F,1(Z)

Now we look at the finite group F41(Z) = Aut(Jz, det,I) = Aut(Jz,0), and we want to
prove the following proposition:

Proposition 2.3.9. The reductive Z-model Fy1 of Fy is not F4(Q)-conjugate to Fyp, and
|Fa1(Z)] < 215-35.52.7.

Denote the subset of Jz consisting of diagonal matrices by D, and the subset of elements
whose diagonal entries are zero by Dy. The formula (2.2) for the quadratic form Q on Jz
shows that equipped with Q we have J; = Dy @ D as quadratic lattices. By Remark 2.3.2,
the quadratic lattice (Qz, N) is isometric to Eg, thus Dy is isometric to Eg @ Eg @ Eg. On
the other hand, the lattice D is isometric to

1
Iy = Z°,q: (21,22, 23) — B (27 + a3 +a3) .

Any element of F,1(Z) preserves the quadratic form Q on Jz, so F41(Z) is a subgroup of
the isometry group O(Jz) of the quadratic lattice Jz. By the theory of root lattices, we have

O(Jz) = O(I3) x (O(0z)1S3),

where S3 is the permutation group of three elements and ¢ stands for the wreath product.
Let p be the restriction map Fy1(Z) — O(Jz) = O(D),g — g¢|p, where O(D) ~ O(I3) is
isomorphic to {£1}® x S;.

Let O(D;I) be the group {o € O(D) |o(I) = I}, which is isomorphic to the permutation
group S3. Since elements in F,1(Z) fix I, the image of p is contained in O(D;I).

Lemma 2.3.10. The image of p is O(D;I) ~ Ss.

Proof. For an element o € S3, we denote by g, the element

[a1, Qg, a3 ; %1, T2, 563] = [%71(1), As-1(2); Gg—1(3) ; 6(0)(%71(1))7 E(U)(%fl(z)), 6(0)(%*1(3))]
(2.7)

in GL(Jz), where the map €(0) : Oz — Oy is defined as identity when o is even, and as the
conjugation when o is odd. In this proof, we write z* := €(o)(z) for short.
For any A = [ay, as, a3 ;x1, 2, 23] € Jz, by the formula (2.3) for the cubic form det, we
have
3
det (g, (A Hag 1y + Tr(, 1) T5-1(2)T5-1(3)) Zag 1y N(T5-1(5))

=1
3

=aja2a3 + Tr(x;_l(l)w2_1(2)$3_1(3)) - Z CLZN(ZL‘Z)
i=1

The property (2.1) of Tr implies that for any x,y, z € Oy,
Tr(zxyz) = Tr(yzz) = Tr(zey) =Te(z -2 -9) =Te(Z-y-7) =Te(g - T - 2),
which can also be stated as Tr(z} -1, 2} -1(9)T;-1(3)) = Tr(z12273) for any o € S3. Hence

det(g,(A)) = det(A). Since g, also fixes I, it is an element in F,;(Z) and its restriction
p(9s) € O(D;1I) ~ S3 is o, thus Im(p) = O(D;1). O
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Let 2 be the kernel of p, then we have a short exact sequence of finite groups:
1= 22— F41(Z) - O(D;1I) ~S; — 1. (2.8)

Lemma 2.3.11. The map « : S3 — F41(Z),0 — g, defined in (2.7) gives a splitting of the
short exact sequence (2.8).

Proof. Tt suffices to show that o +— g, is a group homomorphism. For o,7 € S3, we have

G- © 9o ([a1, az, as; x1, 72, 3))
=9 ([a5-11); o120 Go1(3) ; €(0) (To1(1)), €(0) (To12)), €(0) (T4-1(3))])

A(ro)=1(1)) A(ro)=1(2)) A(ro)1(3) 5
(1) 0 €(0)(T(ro)-1(1)); €(T) 0 €(0) (T (r0)-1(2)), €(T) © €(0) (T (r0)-1(3))

It can be easily seen that the map € : S3 — GL(Qz) is a group homomorphism, thus
Jr © §o = Gro and o +—> g, is also a group homomorphism. [

This lemma tells us Fy1(Z) = 2 x k(S3) and |F41(Z)| = 3! - |Z|. Now we study the
structure of Z.

Lemma 2.3.12. The group & is isomorphic to the group

50(02) = { (@ 8.7) € SO(02)" | a(@)B(y) = 1(77). ¥,y € Oz }

Proof. Fix g € 2 and x € Oy, we define y, z,w € Oz by the formula

Q
o O O
8 o o

0
w
z

o8 O
I
< o 8
o

Since g preserves the Jordan multiplication o, we have

0 00 0 0 0 0 0 0
N(z)|l0 1 0] =g 00 z|of0 0 x
001 0z 0 0z 0
0 w = 0 w z
=|lw 0 ylolw 0 y
z y O z y 0
NG +Nw) 7 wy
| vz Nw+Ny m |,
Ty 2w N(y)+N()

which implies that z = w = 0 and y = N(z). This gives us a homomorphism g — «, from
2 to O(0z) such that ¢[0,0,0;2,0,0] = [0,0,0;a4(z),0,0] for € Og.
Symmetrically, we also get 34,7, € O(0z) such that

9[0,0,0;z,y, 2] =1[0,0,0; (), By(x),v4(x)] for all z,y, z € Oy.
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Taking determinants of both sides, we get

Tr(zyz) = Tr(ay(x)Be(y)v,(2)) for all z,y, z € Oy.

This is equivalent to (ag(#)5,(9). 7,(2)) = (77, 2). Since (77, 2) = (1,(T7), %(2)}, we have

(ag(2)By(y) — T, 74(2)) =0

for any z € Q7. The bilinear form (, ) is non-degenerate, so o, (x)08,(y) = v4(Zy) holds for

any z,y € Oz. By | , Lemma 1.14.4], we have «y, 8,,7, € SO(Oy).
Now we have obtained an injective homomorphism 2 — SO(Qyz). Conversely, by the

definition of the multiplication o and the condition on (a, 8,7v) € SO(Qz), the morphism

[a,b,c;2,y,2] = [a,b,c; a(x), By),v(2)]

—_——

lies in 2, thus Z ~ SO(Qy). O]

e~ —

Let ¢ : SO(Oz) — SO(Qz) be the homomorphism sending a triple («, 3,7) € SO(Qz) to
its third entry v € SO(Qz).

Proof of Proposition 2.3.9. For the bound on |F,1(Z)|, it suffices to prove

ISO(0Qy)| < 2 -3°.5%.7.

Let (a, 3,id) be an element in ker ¢, so a(z)5(y) = zy for all z,y € OQz. Set r = B(1)
and we have a(z) = zr~' and 8(y) = ry. Setting z = xr~!, the relation satisfied by («, 3,id)
becomes:

z(ry) = (zr)y, for all y,z € Q.
According to | , §8, Theorem 1], the octonion r of norm 1 is real, thus r = +1 and
ker p = {(id, id, id), (—id, —id,id)}. As a consequence, we have

SO(0z)| < 2-[SO(0z)| =] O(0z)| = [W(Es)| =237 52 7,

which gives us the desired upper bound for |F,1(Z)].

Suppose that the reductive Z-model Fy 1 of Fy is F4(Q)-conjugate to Fy g, then their Z-
points have the same order as finite groups. In the end of §2.3.2, we prove that |Fy5(Z)| =
212.3%.72.13, thus with the same order, the group F,1(Z) contains an element of order 13.

However, &, 1(Z) is isomorphic to SO(Qz) x S3, whose order is not divided by 13. This leads
to a contradiction. [

Now Proposition 2.3.6 and Proposition 2.3.9 together imply Proposition 2.3.5, and as a
corollary the equality in the upper bound in Proposition 2.3.9 holds:

Corollary 2.3.13. The finite group F41(Z) has order 2* - 3% .52 -7, and ¢ is surjective.
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3 Dimensions of spaces of invariants for F

For a finite subgroup I' and an irreducible representation U of the compact Lie group
Fy4, an interesting problem is to compute the dimension of the space of invariants U'. In
this section we will give an algorithm to compute dim U" for I' = F,1(Z) or Fyg(Z). These
dimensions will play an important role in our computation of spaces of automorphic forms
in §5.1.1. The code of the computations in this section can be found in [Sha].

3.1 Ideas and obstructions

By the highest weight theory, the isomorphism classes of irreducible C-representations of
the compact Lie group Fj4 are in natural bijection with dominant weights of the irreducible
root system F,. Using notations in | , §IV.4.9], we denote the weight \jw; + Agwos +
A3w3 + Agwg by A = (A1, A2, A3, Ag), where wy, s, w3, wy are the four fundamental weights
of F4. Let V, be a representative of the isomorphism class of irreducible representations of
F4 with highest weight A\. From now on we call V, the irreducible representation of F, with
highest weight A for short.

The starting point of the computation of dim VY for some finite subgroup T' of Fy is the
following classic lemma:

Lemma 3.1.1. For a finite subgroup I' C Fy, we have

: 1 1
dlmVE = W ZTY‘VA(PY) = m Z Tr‘VA(C) ) ’0’7

~vel c€Conj(T")
where Conj(L') is the set of conjugacy classes of I' and |c| denotes the cardinality of c.

Because of this lemma, it is enough to solve the following two problems to compute
dim V1:
(i) Find all conjugacy classes of I'; and choose a representative in a fixed maximal torus

T C F, for each conjugacy class;
(ii) For an element ¢t € T, compute its trace Tr|y, (t).

Problem (ii) can be dealt with the following degenerate Weyl character formula:

Proposition 3.1.2. [ , Proposition 2.1] Let G be a connected compact Lie group, T
a mazximal torus, X = X*(T) the character group of T, and ® the root system of (G,T)
with Weyl group W. Choose a system of positive roots @+ C ® with base A and also fix a
W -invariant inner product ( , ) on X ®z R. Let X\ be a dominant weight in X and t an
element in T. Denote the connected component Cg(t)° of the centralizer of t by M. Set
Oy, =M, T)NOT and WM = {w e W :w™'®, C ®T}. Let p and pyr be the half-sum of
the elements of ®* and @}, respectively. We have:

w _ a,w(A
B ZwEWM €<w)t Atp)=p. Haé‘lﬁ(}l ( (a,(p;f))
Trly, (1) = — , (3.1)
Haeqﬁ\q[( — )

where e : W — {£1} is the signature and t* denotes x(t) for convenience.

Using this approach, problem (i) is thus the main difficulty for our computation, and we
will solve it in the following subsections.
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3.2 Generators of F,1(Z) and F,5(Z)

The finite groups I' we are interested in are F,1(Z) and F, g(Z). To find all their conjugacy
classes, we first determine generators of these groups in this subsection.

In the end of §2.3.2, we have already showed that the group ¥, g(Z) is generated by two
elements o1, 5. Their matrices in the basis B, given in (2.6), are written down in Figure 2,
Appendix A.

Based on Corollary 2.3.13, we have F41(Z) = Z x k(S3), where k : S3 — F41(Z) is the

morphism defined in (2.7). The group & is isomorphic to the group SO(Qyz), which is a
double cover of SO(Qy) by Corollary 2.3.13. Therefore it suffices to find generators of 2.

Since O(Qyz) ~ O(Ey) is equal to the Weyl group of Eg, we can take the following set of
generators for SO(Qz):

{ref(a) oref(1l) | € Oz, N(av) = 1},
where for a root a in Qy the reflection ref(«) is defined as
ref(a)(x) =z — (z,a)a.

For a root a € Oy, let L, (resp. R,) be the left (resp. right) multiplication on Q7 by «, and
define B, := L, o R, = R, 0 L,. These elements are contained in SO(Qy). Notice that for a
root o € Oy, ref(a) oref(1) = B,.

e~

Lemma 3.2.1. For any root a € Qy, the triple (Lz, Rz, Ba) is an element in SO(Qy).

Proof. For any z,y € Oz, La(x)Ra(y) = (az)(y@). By Moufang laws | , §6.5],
(@z)(y@) = (a(zy))a = Ba(zy),
thus Ly (2)Ra(y) = Ba(zy) = Bo(Z7). O

By this lemma, we can take
{(Lz,Ra,Ba) | @ € Oz, N(a) = 1} U {(—id, —id, id) }

as generators of 2. Together with a set of generators of k(S3) we have obtained generators

of ?471(2) .

3.3 Enumeration of conjugacy classes

Now with generators of F;(Z) and Fyr(Z), we can start to enumerate their conjugacy
classes. The ConjugationClasses function in | | can assist us in enumerating the con-
jugacy classes of subgroups of permutation groups. Therefore it is enough to realize these
two finite groups as permutation groups.

For F41(Z), we consider its action on the set of vectors v € Oz with Bq(v,v) < 2. The
function gfminim in | | can list all these vectors in the basis B. There are 738 such
vectors and they span the vector space Jg, so the action of Fy1(Z) on this set is faithful,
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which gives us an embedding Fy1(Z) < S73s. We can thus use this embedding to obtain a
set of representatives of conjugacy classes of F41(Z) via the help of | ].

For the other group ¥, g(Z) we use a similar strategy. As mentioned in Remark 2.3.8, the
quadratic lattice (Jz, (, )r) has no roots, so we consider the set of v € Jz such that (v, v)g =
3, which has cardinality 1640 and generates Jg. This gives an embedding Fy g(Z) < Si640,
then we can use | ].

Here we present the results, and all the codes are available in [Sha].

Proposition 3.3.1. There are 113 conjugacy classes in Fy1(Z), while Fyr(Z) has 49 con-
jugacy classes.

Furthermore, | ] gives the size of each conjugacy class ¢, and selects a representative
for ¢ in the form of permutation. We rewrite these representatives as matrices in the basis

B.

3.4 Kac coordinates

In the previous subsection, for I' = F4 1(Z) or Fy g(Z), we obtained a list of its conjugacy
classes and a representative element g. € I' for each conjugacy class c.

However, the representative g. may not be contained in the fixed maximal torus in
Proposition 3.1.2. Notice that in the computation of the trace of g. for a I'-conjugacy
class ¢, what really matters is the Fs-conjugacy class containing c¢. Furthermore, since c is
included in the finite group I', the F4-conjugacy class containing it must be torsion.

In | |, it is shown that we can choose a representative for a torsion Fy-conjugacy
class in a fixed maximal torus using its Kac coordinates. Here we provide a brief review, and
more details can be found in Reeder’s paper.

Let G be a simply-connected simple compact Lie group, T" a fixed maximal torus, X :=
X*(T) and Y := X,(T) the groups of characters and cocharacters respectively, and ® the
root system of (G, T). Denote the natural pairing X xY — Z by (, ). Let A = {ay,...,a,}
be a set of simple roots of ®, and {coy,...,,} its dual basis in Y, i.e. (a;,t0;) = J;;.

We have a surjective exponential map exp : Y ®z R — T determined uniquely by the
property

a(exp(y)) = ¥ Yo € X,y € Y @z R.

and Y is the kernel of this exponential map. This induces an isomorphism (Y ®;R)/Y ~ T

Let ap = Y a;c; be the highest root with respect to the choice of simple roots A, and
i=1

set g = 1 — i, a9 = 1 and oy = 0. Now we have > a;a; = 1. The alcove determined by A

1=0
is the intersection of half-spaces:

C={reY®zR|{,x) >0,Vi=0,1,...,7},

or

=0

Zaixizl,xiEO,W:O,L...,T}.
1=0
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Each torsion element s € G is conjugate to exp(x) for a unique z € C N (Y ®z Q) since
the group G is simply-connected. Let m be the order of s, thus

r
12 .
xr = — S;TW;
m <
=1

for some non-negative integers si, ..., s, satisfying ged{m, s1,...,s,} = 1.
— T
Since x € C, we set s9 :=m — > a;5; > 0. Now the non-negative integers sg, s1,. .., S,
i=1
satisfy ged{so,...,s,} = 1 and the equation

,
Z%‘Si = m with ag = 1.

1=0

The coordinates (sg, $1,...,s,) are called the Kac coordinates of s, which are uniquely de-
termined by the G-conjugacy class of s.

In our case, the compact group Fy is simply-connected and the highest root ay = 2a; +
3ag + 4ag + 20y, Here aq, g, g,y are still chosen as in | , §IV.4]. In conclusion, we
have:

Proposition 3.4.1. Let T be a fized mazximal torus of Fy. Any element of order m in Fy

s
(=)

is conjugate to a unique element exp for some non-negative integers si, Sa, S3, S4

arising from a 5-tuple (so, S1, S2, S3, S4) in
{(3:0, ..., 1) €N ‘ xo + 2x1 + 3x9 + 4a3 + 224 = m, ged{xo, ..., x4} = 1} . (3.2)

By solving the equation in (3.2), we enumerate all the torsion Fy-conjugacy classes of
order m.

3.5 Comparison of conjugacy classes

Now we can enumerate F4-conjugacy classes of a given order, but there are more con-
straints on the F,-conjugacy classes containing I'-conjugacy classes obtained in §3.3. So we
define the following class of F4-conjugacy classes:

Definition 3.5.1. Let ¢ be an F -conjugacy class, and we say that c is a rational conjugacy
class if it satisfies:

o its trace Tr(c)|;, on the adjoint representation 4 of Fy is a rational number;
« its characteristic polynomial P.(X) := det(X -id — g|;.) on Jc := Jg @ C, g € F,
being a representative of ¢, has rational coefficients.

For I' = F41(Z) or F4r(Z), since I' is a subgroup of GL(Jz), the F4-conjugacy class
containing a ['-conjugacy class of I' must be rational in the sense of Definition 3.5.1.
Our strategy in this subsection is:

(1) find all rational torsion Fs-conjugacy classes, and for each of them choose a represen-
tative in the maximal torus 7T fixed before in §3.4;
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(2) determine which F4-conjugacy class contains a given I'-conjugacy class by comparing
their traces and characteristic polynomials.

Before explaining the algorithm for step (1), we state the following lemma:

Lemma 3.5.2. If m is the order of an element in ¥4 whose characteristic polynomial on J¢
has rational coefficients, then m = 66,70,72,78,84 or 90, or m < 60.

Proof. As a representation of Fy, J¢ is isomorphic to V, @& C, where C stands for the trivial
representation. Since the zero weight appears twice in the weights of V,,, the characteristic
polynomial is divisible by (X —1)3. On the other hand, the roots of this polynomial contain
a primitive mth root of unity, thus the polynomial is also divisible by the mth cyclotomic
polynomial. Hence we have ¢(m) < 24, where ¢ denotes the Euler function. This implies
m < 60, or m = 66, 70,72, 78,84 or 90.

]

With the help of | |, we enumerate all the Kac coordinates s = (s, s1, S2, 83, S4)
satisfying the conditions in (3.2) for each integer m in

{n < 60| ¢(n) < 24} U {66,70,72,78,84,90}.

For each such s, we compute the trace on f; and the characteristic polynomial on J¢ of
4 i T4 . . .
the corresponding element ¢ = exp(%) € T. Using this algorithm, we get the Kac

coordinates of all rational torsion Fy-conjugacy classes.

Proposition 3.5.3. There are exactly 102 rational torsion conjugacy classes in Fy, whose
Kac coordinates are listed in Table 4.

Our result coincides with | , Table 9.1]. In Table 4, we also list the invariants defined
below for all rational torsion F4-conjugacy class.

For a representative g € F4 of a rational torsion conjugacy class ¢, we can compute its
characteristic polynomial on J¢:

27

Py(X) = det (X -id — gl3.) = Y (—1)""a;(g) X"

i=0
Now we assign to g a quadruple

i(9) == (a(9), azs(9), az4(g), Tr(Ad(g)l5,)) ,
and set i(c) :=1(g).

Corollary 3.5.4. Let g1, g2 be two elements in either F41(Z) or Fyr(Z), then g1 and go are
conjugate in ¥y if and only if i(¢1) = i(g2)-

Proof. This follows from Table 4. For each rational torsion conjugacy class ¢, we list its
order o(c) and the associated quadruple i(c). We observe that two different classes ¢ have
different i(c). O
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Remark 3.5.5. There exist examples of two different rational torsion conjugacy classes in Fy
whose characteristic polynomials on J¢ are the same. For instance, the order 12 conjugacy
classes ¢; and ¢y represented by the Kac coordinates (1,1,1,1,1) and (2, 1,0, 1, 2) respectively
share the same characteristic polynomial on J¢:

X27—X24—2X15+2X12+X3—1.

However, the trace of ¢; on f4 is 0, while that of ¢y is 3. This shows that the 26-dimensional
irreducible representation of F4 is not “excellent” in the sense of Padowitz. It is also observed
in Padowitz’s table | , Table 9.1] that the motives attached to the centralizers of these
two conjugacy classes, in the sense of Gross, are different.

Now we explain our algorithm for step (2). For each I'-conjugacy class ¢ and its repre-
sentative g. chosen in §3.3, we compute the quadruple i(g.) and compare it with Table 4.
By Corollary 3.5.4 we can determine the F4-conjugacy class containing ¢. In Table 5 we
list all the Kac coordinates s whose corresponding rational conjugacy class ¢s in Fy satisfies
that ¢s N Fy1(Z) or ¢ N Fyp(Z) is non-empty, as well as the cardinalities of intersections
ni(s) = |es N F41(Z)| and ny(s) = |cs N Fur(Z)]|.

3.6 The formula for dim VE

Now we can deduce the formula for d;(\) := dimV}*,i = 1,2, where I'; := J,;(Z) and
Iy := F4g(Z), for a given dominant weight A:

. _ 1 1
dmVy = 3 (@ bl = 3 T fenTi,
Y ceConj(Ty) 1 ceConj(Fy)

For each rational conjugacy class ¢ whose contribution to this formula is nonzero, we have
already given |¢cNT;| in Table 5, and according to Proposition 3.1.2 the trace Tr|y, (¢) is an
explicit function of A1, Ao, A3, A4.

This gives us the following theorem, which is the main computational result of this paper:

Theorem 3.6.1. For each dominant weight X\ of the compact Lie group ¥4, we have an
explicit formula for

d;(\) = dim Vi i =1,2.
For dominant weights A = (A1, Ao, Az, Ag) with 2A\1 + 3Ao + 23 + Ny < 13, we list all the
nonzero d(\) := dy(\) + da(N) in Table 6.

Remark 3.6.2. Later we will see the condition on A in Theorem 3.6.1 is equivalent to that
the maximal eigenvalue of the infinitesimal character associated to V is not larger than 21.

In [Sha], we also provide a larger table of [\, di (), da(X),d(N)] for weights with 2A\; +
3 4+ 2A3 + Ay < 40.
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4 Subgroups of Fy

In this section we will classify subgroups of the compact Lie group Fy = Aut(Jg,o)
satisfying certain conditions and determine their centralizers in Fy. Our results will be used
in §6, but this problem also has its own interest. Our precise aim is to find all the conjugacy
classes of closed subgroups H of F such that:

(1) H is connected;

(2) The centralizer of H in F, is an elementary finite abelian 2-groups, i.e. it is a product
of finitely many copies of Z/27Z.

(3) The multiplicity of zero weight in the restriction of the 26-dimensional irreducible
representation V, of Fy to H is 2.

If we only consider the first condition, the problem is equivalent to classifying connected
semisimple Lie subalgebras of the complexified Lie algebra f4, up to the adjoint action of

F4(C). This has been studied by Dynkin in | | for all simple complex Lie algebras,
without giving full details. So we will give a detailed classification for F, in this section,
following Dynkin’s original idea and Losev’s result | , Theorem 7.1].

Briefly, our strategy is to enumerate first all the connected simple subgroups of F, inside
maximal proper compact subgroups, and to index them by the restrictions of V,. Then
we compute their centralizers case by case, and combine these results together to get all the
connected subgroups satisfying our conditions.

4.1 Element-conjugacy implies conjugacy

To be more precise, what we want to classify, up to Fy-conjugacy, are embeddings from
connected compact Lie groups to Fy satisfying two additional conditions. In this subsection
we will explain why it is enough to consider their element-conjugacy classes, where the notion
of element-conjugacy is defined as follows:

Definition 4.1.1. | , §1] Let G and H be two compact Lie groups and ¢, ¢’ : H — G
be two Lie group homomorphisms. We say that ¢ and ¢’ are conjugate if there is an element
g € GG such that

gd(h)g™t = ¢'(h), for all h € H.

They are said to be element-conjugate if for every h € H, there is a g € G such that
gp(h)g™" = ¢'(h).
The element-conjugacy can be rephrased in the following way:

Lemma 4.1.2. Let ¢,¢' : H — G be two homomorphisms between compact Lie groups, then
they are element-conjugate if and only if for each linear representation m: G — GL(V) the
compositions o ¢ and wo ¢ are conjugate in GL(V).

Proof. Tt is a consequence of the Peter-Weyl theorem for compact Lie groups, which says
that two elements of G are conjugate if and only if they have the same trace on all the
irreducible representations of G. 0
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It is obvious that two conjugate homomorphisms are element-conjugate, but the converse
fails in general. Fortunately, the converse holds when G = Fy4, due to the following result
for Lie algebras:

Theorem 4.1.3. | , Proposition 6.2, Theorem 7.1] Let f4 be a simple complex Lie
algebra of type ¥y and Fyc the complexification of Fy. Let by be a reductive algebraic Lie
algebra, i.e. b is the Lie algebra of some reductive complex group, and ¢,¢" : h — f4 two
injective Lie algebra homomorphisms. If the restrictions of ¢ and ¢' to a Cartan subalgebra
s of b are conjugate in the sense that ¢ o ¢|s = ¢'|s for an inner automorphism ¢ of f4, then
¢ and ¢’ are conjugate.

Remark 4.1.4. Actually, in [ ] Losev uses the following equivalence relation on Lie alge-
bra homomorphisms: two Lie algebra homomorphisms ¢, ¢’ : h — g are equivalent if there
exist liftings H — G of ¢, ¢’ to reductive complex groups which are G-conjugate in the sense
of Definition 4.1.1. By Lie group-Lie algebra correspondence this equivalence relation is the
same as p o ¢ = ¢ for an inner automorphism ¢ of fy.

This theorem implies the result we need for Fy:

Proposition 4.1.5. For any connected compact Lie group H, two element-conjugate homo-
morphisms from H to ¥4 are conjugate.

Proof. The argument that deduces this result from Theorem 4.1.3 can be found in the proof
of | , Proposition 3.5]. O

4.2 A criterion for element-conjugacy

According to Lemma 4.1.2 and Proposition 4.1.5, to check whether two homomorphism ¢
and ¢’ from a connected compact Lie group H to F are conjugate, it suffices to verify that for
every irreducible representation 7w of Fy, mo¢ and wo ¢ are equivalent as H-representations.
Moreover, we have the following useful fact:

Proposition 4.2.1. Let (my, Jo) be the 26-dimensional irreducible representation of Fy. Two
homomorphisms ¢, ¢’ from a connected compact subgroup H to ¥y are conjugate if and only
if two H-representations my o ¢ and mg o ¢’ are equivalent.

This result is a part of | , Theorem 1.3], but Dynkin only gives a short sketch of
the proof, so in this subsection we will give the proof of Proposition 4.2.1.

We first give a preliminary discussion on orders. Let X be an abelian groupand ¢ : X — R
a Z-linear map. This map induces a total preorder < on X defined by = < y if and only
if /(x) < l(y). A preorder on X of this form will be called an L-preorder. If the map ¢
is injective, the L-preorder it induces is an order and we call this order an L-order. For
instance, any free abelian group of finite rank admits L-orders.

Lemma 4.2.2. Let f: X — Y be a homomorphism between finitely generated free abelian
groups X and Y, with an L-order on'Y', and S a finite subset of X — {0}. There exists an
L-preorder < on X such that for any s € S we have either s > 0 or s <0, and if s > 0 then
f(s)>0inY.
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Proof. We choose ¢ : Y — R such that the L-order on Y is defined by ¢. Write S = Sy U 51,
with So = S Nker f. If Sy is empty, then the L-preorder on X defined by ¢ o f satisfies the
conditions.

If Sy is not empty, we choose an arbitrary injective Z-linear map j : X — R and set

T 2ses [j(s)]

We claim that the L-preorder on X defined by j' = £o f +¢j satisfies the desired conditions.
Indeed, for s € Sy, j'(s) = €j(s) is nonzero. Also for s € Sy, by our choice of €, we have
lej(s)] < [(f(s))|, so j'(s) is nonzero and of the same sign as £(f(s)). O

The next lemma concerns the partial order < of the weights of the 26-dimensional irre-
ducible representation 7y of Fy. Recall that for two weights A and p of Fy, fixing a positive
root system of Fy, we write A > p if A — p is a finite sum of positive roots.

Lemma 4.2.3. The 26-dimensional irreducible representation (o, Jo) of F4 has four unique
weights A1 = Ao = A3 = Ay satisfying that A < Ay for all other weights X\. Moreover, those 4
weights A1, Ao, A3, Ay form a Z-basis of the weight lattice of Fy.

Proof. Fix a maximal torus T of Fy, and let X = X*(T') be its character lattice and & C X
a positive root system with respect to (Fy,T). We still use Bourbaki’s notations [ ,
§IV.4.9] for the root system F,. The simple roots with respect to ®* are given by

1
Oél282—83,042263—84,a3:84704425(81—82—83—84),

where ¢, €9, €3, €4 is the basis of X ®z R ~ R* chosen in | | satisfying

€1+ €&2+¢e3+¢y

X =7+ Zeg+ Zes+ Zes + 7 5

The highest weight of 7y is wy = a3 + 25 + 3a3 + 2a4 = 1. The orbit of w4 under the
Weyl group consists of +¢; for i = 1,2, 3,4 and %(ial +e9te3tey). These 24 weights have
multiplicity 1, and the zero weight appears with multiplicity 2.

We claim that the weights

1
)\1 = 81,)\2 = 5(81 + &9 +€3 +€4),
1 1
Az = 5(61 +eatez—eq), = 5(51 +e9—e3+¢€4)

satisfy the desired properties. Indeed, this follows from the following table:
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positive weight A

relation with Aqi, A\g, A3, Ay

€1

A1

€1 — &9+ E3—¢&4 /2

)\4—061—043

Ay — Q1 —az —ag
)\4—CY1—042—2043

€1 — &9 —e3+¢4)/2
£1— &9 —€3—64)/2

9 )\4—043—064

3 )\4—061—043—064
€4 M—ap—a—a3—qy
(51+€2+€3—|—€4)/2 )\2:>\1—Oé4
(€1+€2+€3—€4)/2 )\3:)\2—043
(51+€2—53+64)/2 )\4:>\3—042
(61+€2—€3—E4)/2 )\4—043
(e1—eates+e4)/2 | M—

( )

( )

(

Table 1: Positive weights of the 26-dimensional irreducible representation V., of Fy

and the following identities:

€1 t&r+¢€3+¢é4

E1 =AML= A+ A3+ Mg, 63 = Ao — Ay 60 = Mg — As, 5

- )\2.

]

Proof of Proposition 4.2.1. By Proposition 4.1.5 it suffices to show that if my o ¢ and 7y 0 ¢/
are equivalent as H-representations, then ¢ and ¢’ are element-conjugate. Since any element
of H is included in some maximal torus, we may assume that H is a torus.

We fix a maximal torus T of F,. As all maximal tori are conjugate in F,, up to replacing
¢ and ¢’ by some Fy-conjugate, we assume that both ¢(H) and ¢'(H) are contained in T.
Let X = X*(T) and Y = X*(H), then ¢ and ¢ induce Z-linear maps ¢*,¢"* : X — Y
respectively.

Choose an arbitrary L-order on Y, and denote by ® C X the root system of (Fy,T).
By Lemma 4.2.2; there is an L-preorder < (resp. <’) on X such that for any o € & we
have either « > 0 or @ < 0 (resp. either a >" 0 or @ <’ 0), and the Z-linear map ¢* (resp.
¢"*) preserves the preorders on X, Y. We denote the positive root system determined by the
L-preorder < (resp. <') by &% (resp. &1/).

A general fact about root systems is that the Weyl group of (F4,T') acts transitively on
the set of positive root systems of (Fy,T). Up to conjugating ¢’ by a suitable element in the
normalizer Ng, (7'), we may assume that &/ = ®*. Now our aim is to show ¢ = ¢, which
is equivalent to ¢* = ¢"*.

Let 'W be the multiset of X consisting of the weights appearing in my. Let Ay = Ay >
A3 > A4 be the 4 weights of my defined in Lemma 4.2.3 and all of them have multiplicity 1 in
mo. For the Z-linear map f = ¢* or ¢"*, the preorder-preserving property of f and Table 1
imply that f(A1) > f(A2) > f(A3) > f(Ag) and f(Ay) > f(A) for all other weights A of 7y. In
other words, f(\;) is the greatest element of f(W), and for i = 2,3,4, f(\;) is the greatest
element of f(W)\ {f(\),...,f(Ni_1)}. By the assumption mg o ¢ = m 0 ¢, the multisets
¢*(W) and ¢"*(W) of Y coincide. It follows that we have ¢*(\;) = ¢"*()\;) for i = 1,2,3,4,
and as Ai, A, A3, A4 form a basis of X by Lemma 4.2.3, we deduce ¢* = ¢"*. O
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Hence the conjugacy class of a homomorphism from a connected compact Lie group H
to F4 is determined by the restriction of the 26-dimensional irreducible representation to H.

4.3 Maximal proper connected subgroups

Up to conjugacy, the compact group F,4 has five maximal proper connected subgroups by
[ , Theorem 5.5, Theorem 14.1]. We will recall these five subgroups in this subsection
and show that there are no other maximal proper connected subgroups.

We first introduce the following notations, which will be used a lot of times in this section:

Notation 4.3.1. In this article, we use the following notations of compact Lie groups:

o For n > 2, denote by SU(n) the compact special unitary group with respect to the
standard Hermitian form on C™.

o For n > 3, denote by SO(n) the compact special orthogonal group with respect to the
standard quadratic form on R", and by Spin(n) the compact spin group, which is a
double cover of SO(n).

o For n > 1, denote by Sp(n) the compact symplectic group: the group of invertible
n X n quaternionic matrices that preserve the standard Hermitian form

(z,y) =T1y1 + - + Tnyn

on H", where H is Hamilton’s quaternions.
o The group G, is defined as Aut(Qg, o), the automorphism group of the real octonion
division algebra, which is simply connected and has trivial center.

Remark 4.3.2. The complexification of the compact symplectic group Sp(n) is the usual
complex symplectic group Sp(2n,C) = Sp,,(C), which is defined as the group of linear
transformations of C?" preserving the standard symplectic bilinear form.

Notation 4.3.3. We denote by p,, the group of nth roots of unity. If m groups Gy, ..., G
all have a unique central subgroup isomorphic to pu, with an embedding ¢; : u, — G;, we
denote by u4 the diagonal subgroup

{(t1(9), - tm(9)) 19 € pin} C Gy X -+ X G

Note that when n = 2 the embedding ¢; is unique, but when n > 3 we have to give ¢1,...,tm
for defining p2.

Following Dynkin’s definitions of R-subalgebras and S-subalgebras in | , §7], we
give the following definition for subgroups:

Definition 4.3.4. Let G be a connected compact Lie group and H a connected closed
subgroup. We say that H is a regular subgroup if it is normalized by a maximal torus of
G. If there is only one regular subgroup of GG containing H, namely G itself, we call H an
S-subgroup, otherwise we call it an R-subgroup.

Ezamples 4.3.5. (1) Subgroups with maximal ranks are regular.
(2) A proper regular subgroup is an R-subgroup.
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(3) The principal 3-dimensional subgroups are S-subgroups by | , Theorem 9.1].
(4) A maximal proper regular subgroup has maximal rank.

Let H be a maximal proper regular subgroup of G, i.e. if there is another regular subgroup
H' of G containing H, then we have H' = G. The Borel-de Siebenthal theory tells us the
Dynkin diagram of the root system of H is obtained by deleting an ordinary vertex with
prime label from the extended Dynkin diagram of the root system of G.

For our compact group Fy, the extended Dynkin diagram is:

The vertex a; corresponds to (Sp(1) x Sp(3)) /u5', s corresponds to (SU(3) x SU(3)) /us
(we will define this p5* in §4.3.3), and ay corresponds to Spin(9). The vertex as corresponds
to (SU(2) x SU(4)) /s, which is also regular but not maximal since we have the embedding:

(SU(2) x SU(4)) /py’ = (Spin(3) x Spin(6)) /uy < Spin(9).

These three maximal proper regular subgroups are also maximal among proper connected
subgroups of Fy, because any connected subgroup containing one of them has maximal rank
and must be regular.

Besides these three regular subgroups, F4 also admits other maximal proper connected
subgroups that are not regular. A non-regular maximal connected subgroup H of F, must
be an S-subgroup. As a subgroup of F, containing an S-subgroup is also an S-subgroup, it
suffices to find all maximal S-subgroups of Fy.

Theorem 4.3.6. [ , Theorem 14.1] Up to conjugacy, there are two mazimal S-
subgroups in Fy: the principal PSU(2) and Gy x SO(3), where PSU(2) := SU(2)/{+£id}
is the adjoint group of SU(2).

Putting the Borel-de Siebenthal theory and Theorem 4.3.6 together, we have:

Theorem 4.3.7. Up to conjugacy, there are five maximal proper connected subgroups of Fy.
They are respectively isomorphic to

Spin(9), (Sp(1) x Sp(3)) /us', (SU(3) x SU(3)) /ug', Go x SO(3), (principal) PSU(2).

In the rest of this subsection, we will give the explicit embeddings of these five maximal
proper connected subgroups into Fy and compute their centralizers in Fy.

4.3.1 Spin(9)
There is an involution o € F4 on Jg defined by:
ola,byc;z,y, 2] =la,b,c;x,—y,—z], forall a,b,c € R,z,y,z € Og.

By | , Theorem 2.9.1], the centralizer Cg,(0) of ¢ in Fy is also the stabilizer of E; =
diag(1,0,0) € Jg.
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Lemma 4.3.8. The group Cyg,(0) preserves respectively the subspaces
J1:={[0,b,—b;2,0,0]|b € R,z € O}

and
J2:={[0,0,0;0,y,2]|y,z € Or}

Of JR.

Proof. The first subspace J; is exactly {X € Jg|Ey 0o X = 0,Tr(X) = 0} and the second
subspace is {X € Jg|2E; 0 X = X}. The lemma follows from the fact that Cg, (o) is the
stabilizer of E; in F,. ]

This lemma gives the following group homomorphism:
Crg,(0) = SO(J;) = SO(9),9 — gl1,,

which induce an isomorphism Cp, (o) ~ Spin(9) by | , Theorem 16.7(ii)]. Since the
Borel-de Siebenthal theory shows that the regular connected subgroup of type By is unique
up to Fy-conjugacy, so we shall thus refer to this group Cg, (o) as Spin(9) in the sequel, by
a slight abuse of language.

The restriction of the 26-dimensional irreducible representation (g, Jo) to Spin(9) is
isomorphic to

16 VQ D VSpiH? (41)

where 1 is the trivial representation, Vg is the standard 9-dimensional representation and
Vspin is the 16-dimensional spinor module. These two representations Vg and Vgpi, can be
realized on J; and Js respectively.

Notation 4.3.9. To make the restriction of Jy not too messy when it involves both direct
sums and tensor products, we will replace & by + when writing down the decomposition.
For example, we write Jo|spin(o) 88 1 + Vg + Vgpin.

The restriction of the adjoint representation f4 of Fy to Spin(9) is isomorphic to:
A?Vg + Vspin, (4.2)

where A%Vy is the adjoint representation of Spin(9).

Now we compute the centralizer of Spin(9). If an element g centralizes Spin(9), then it
must commute with o € Spin(9). Hence Cg,(Spin(9)) is contained in Cg, (c) = Spin(9), thus
it is isomorphic to the center of Spin(9), which is isomorphic to Z/27Z and generated by o.

Remark 4.3.10. By symmetry, the stabilizer of E; = diag(0,1,0) (resp. E3 = diag(0,0,1)) is
also the centralizer of the map [a,b,c;x,y, z] = [a,b,c; —x,y, —z] (resp. [a,b,c;—x, —y, z])
in Fy4, and is isomorphic to Spin(9).
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4.3.2 (Sp(1) x Sp(3)) /uy

The subalgebra of Qg generated by 1,eq, €5, ey is isomorphic to the quaternion division
algebra H, and as a real vector space Qg can be decomposed as H ¢ Hes. Using this
decomposition, the conjugation on Qg becomes

x + yes — T — yes, for all x,y € H.

As Jg = Herm3(Og) is the space of “Hermitian” matrices in M3(Og), we embed the space
Hermgy(H) of “Hermitian” matrices in M3(H) into Jg via our identification of H as a subal-
gebra of Qg. Then we have the following isomorphism of vector spaces:

Hermgy(H) @ H* — Jg,
<M7 a = (CLl, a2, a3)) — M + [0, O, 0 , a1€5, A2€5, age5].

With this identification, we have an involution v in F4 defined as
v(M,a) = (M, —a).

Proposition 4.3.11. / , Theorem 2.11.2] Let ¢ : Sp(1) x Sp(3) — GL(Jgr) be the
morphism defined as

o(p,A) (M, a) = (AMA_l,paA_l) , for M € Herms(H), a € H?.

Then the kernel of ¢ is the diagonal subgroup ps generated by v, and the image of ¢ is
Cr, (7). In particular, ¢ induces an isomorphism:

(Sp(1) x Sp(3)) /u5 ~ Cr, (7).

From now on we refer to the regular connected subgroup Cr, () as (Sp(1) x Sp(3)) /us.
The restriction of the irreducible representation Jy of F4 to this subgroup is isomorphic
to

St ® Ve +1® Vi, (4.3)

where St is the 2-dimensional standard representation of Sp(1) ~ SU(2), Vg is the standard 6-
dimensional representation of Sp(3) and V4 is the 14-dimensional irreducible representation
of Sp(3) which satisfies A?V3 =~ V4 @ 1. The first component St ® Vg is realized on H? and
the second component 1 ® V4 is realized on the trace-zero part of Herms(H).

The restriction of the adjoint representation f, of Fy to (Sp(1) x Sp(3)) /u4 is isomorphic
to

Sym? St ® 1 4+ St ® Vi, + 1 ® Sym? Vg, (4.4)

where V7, is another 14-dimensional irreducible representation of Sp(3).

By a similar argument in the case of Spin(9), the centralizer of (Sp(1) x Sp(3)) /u4 in Fy
is isomorphic to Z((Sp(1) x Sp(3)) /us) ~ Z/27Z. 1t is generated by the involution v, which
corresponds to (—1,1) in Z(Sp(1) x Sp(3)) =~ ua X po.

Remark 4.3.12. Tt may help to notice that there are exactly two conjugacy classes of involu-
tions in Fy, whose centralizers in F4 are Spin(9) and (Sp(1) x Sp(3)) /u5* respectively.
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4.3.3 (SU(3) x SU(3)) /ug

Take w = %?3 and identify the center of SU(3) with pg by identifying w with the
scalar matrix wlz. Then the diagonal subgroup p5 C SU(3) x SU(3) is generated by (w,w).

By | , Theorem 2.12.2], the centralizer in Fy of an order 3 element in F is isomorphic
to (SU(3) x SU(3)) /us'. As before, by an abuse of language we will refer to this subgroup
as (SU(3) x SU(3)) /ug. Notice that the roots of the first copy of SU(3) are short roots of
F4, and those of the second copy are long roots of Fy.

Since SU(3) admits an outer automorphism, this unique (up to conjugacy) 2As-type
subgroup (SU(3) x SU(3)) /us* of Fy has two embeddings into F4 which are not conjugate.
The restrictions of the irreducible representation Jy along those embeddings are isomorphic
to

slb®1+ Vi@ Vi+ Ve Vs, (4.5)
and
slE®l+Vi®Vs+ Vi Vi (4.6)

respectively. Here V3 is the standard 3-dimensional representation of SU(3), V is the dual
representation of Vs, and sl3 is the adjoint representation of SU(3).

The restriction of the adjoint representation f; of F to (SU(3) x SU(3)) /u%* is isomorphic
to

sl3®14+1®sl; + Sym? Vs ® V4 + Sym? Vi, ® Vs (4.7)
or
sl3® 141 ®sl3 + Sym? Vs ® Vs + Sym? Vi, ® V5. (4.8)

Again, we have an isomorphism Cp, ((SU(3) x SU(3)) /ug) ~ Z/3Z.

4.3.4 Gy x SO(3)
We define an injective morphism ¢ : G x SO(3) — GL(Jg) by
!(g,0)[a,b,c;x,y, 2] = Ola,b,c; g(x), g(y), 9(2)]O~, for all a,b,c € R, 2,9,z € O, (4.9)

by viewing O € SO(3) as an element in Jg = Hermy(Og) with entries in R. This morphism
is well-defined since real numbers R is the center of the octonion division algebra Qg. For
any g € Go and O € SO(3), the linear automorphism ¢(g, O) preserves the cubic form det
and the polarization I, thus ¢ induces an embedding of Gy x SO(3) into F4. In the sequel we
will refer to the image of ¢ as Gy x SO(3).

The restriction of the irreducible representation Jy to Go x SO(3) is isomorphic to

V; ® Sym? St + 1 ® Sym* St, (4.10)

where V7 is the fundamental 7-dimensional representation of Gy (the trace-zero part of
Oc¢) and St denotes the standard 2-dimensional representation of SU(2). Here we use the
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exceptional isomorphism SO(3) ~ PSU(2) = SU(2)/u2 to view odd dimensional irreducible
representations Sym®” St,n € N of SU(2) as irreducible representations of SO(3). The first
component V7 ® Sym? St is realized on the space

{[0,0,0;z,y, 2] | x,y, z € Og, Tr(z) = Tr(y) = Tr(z) = 0},
and the second component 1 ® Sym* St is realized on the space
{la,b,c;z,y, 2] |a,b,c,x,y,z € Ria+ b+ c=0}.
The restriction of the adjoint representation f; of F4 to Go x SO(3) is isomorphic to
go®1+ V;®Sym*St + 1 ® Sym? St, (4.11)
where g, is the adjoint representation of Gs.
Proposition 4.3.13. The centralizer of Go x SO(3) in Fy is trivial.

Proof. Let g be an element in Cg, (G x SO(3)). Because the image of diag(1l,—1,—1) €
SO(3) in Fy is the involution o defined in §4.3.1, g lies in Cp,(0), thus it stabilizes E;.
By Remark 4.3.10, we also have g stabilizes E; and Ej3 respectively. According to | ,
Theorem 16.7(iii), Lemma 15.15], ¢ is an element of the form

[a,b,c;x,y, 2] — [a,b,c;a(z), B(y),v(z)], for all a,b,c € R, x,y, z € Ok,
where «, 3,7 € SO(OR) satisfy
a(x)B(y) = y(zy) for all z,y € Og. (4.12)

The image of (é _8 g) € SO(3) in Fy is the map

1

la,b,c;x,y, 2] — [a,c,b; —T, —Z,7].

The fact that it commutes with g implies that (%) = a(z) and 5(T) = y(x) for all x € Og.
By symmetry we get o« = = and (4.12) shows that

a(r)a(y) = a(zy) = a(Ty) = a(zy), for all z,y € Op.

Hence a € Gy and we have proved that Cg,(SO(3)) = Ga, thus the centralizer of Gy x SO(3)
in Fy is the center of Gy, which is trivial. L]

4.3.5 The principal PSU(2)

The image of the principal embedding from SU(2) into Fy4, in the sense of | , Theorem
4.1.6], is also a maximal proper connected subgroup of F,. The restriction of the irreducible
representation Jy to this SU(2) is isomorphic to

Sym® St + Sym®® St,

where St is the standard 2-dimensional representation of SU(2). This implies that the image
is isomorphic to PSU(2), and we call it the principal PSU(2) of Fy.

By the general property of principal embeddings, its centralizer is the center of Fy. It is
well-known that the center of F, is trivial.
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4.4 Classification of A;-subgroups

In this subsection we will classify Aj-subgroups of Fy, i.e. subgroups that are isomorphic
to SU(2) or PSU(2). By | , Theorem 9.3 every Aj-subgroup X of Fy is either the
principal PSU(2) or an R-subgroup, i.e. X is contained in some proper regular subgroup of
F4. When X is an R-subgroup, up to conjugacy it is contained in one of the three regular
maximal proper connected subgroups of F, we have found in §4.3. All these three regular
subgroups arise from classical groups, thus their A;-subgroups are well-known.

By Proposition 4.2.1, a conjugacy class of Aj-groups of Fy is determined uniquely by the
restriction of the 26-dimensional representation J, to it.

Notation 4.4.1. An isomorphism class of n-dimensional representation of SU(2) gives a
partition of the integer n. We will use the notation [N*~¥ (N — 1)kv-1 2k k] where
kn # 0 and Zf;l tk; = n, for a partition of n. For example, the restriction of Jy to the
principal PSU(2) is isomorphic to Sym® St 4+ Sym'® St, thus we index this A;-subgroup by
the partition [17,9] of dim J, = 26.

4.4.1 A;-subgroups of Spin(9)

We start from Aj-subgroups of SO(9). According to | , Theorem 5.1.2], the conju-
gacy classes of morphisms SU(2) — SO(9) are in bijection with partitions of 9 in which each
even number appears even times.

Lemma 4.4.2. (1) There are 12 different conjugacy classes of Aj-subgroups of Spin(9),
which correspond to the following partitions of 9:

9],[7,12],[5,3,1], [5, 2%, [5, 1*], [42, 1], [3%], [3%, 17], [3, 22, 17], [3, 1°], [2*, 1], [22, 1°].

(2) There are 10 different conjugacy classes of Ai-subgroups of ¥4 that are contained in
the subgroup Spin(9) given in §4.3.1. The restrictions of the 26-dimensional irreducible
representation Jo of Fy to these Ay-subgroups correspond to the following partitions of 26:

[11,9,5,1],[7°,1%], [5%,3%,17], [3°,17], 13
[5%,4%,3,2%,1], [5,4%,1°], [4%, 3%, 2%, 1], [3%,2°,1°], [3,2%,17], [2, 1™). (4.13)
Proof. By the lifting property of covering maps and the fact that SU(2) is simply connected,
every Aj-subgroup of SO(9) is lifted uniquely to an A;-subgroup of Spin(9). The assertion
(1) follows directly from | , Theorem 5.1.2], and the assertion (2) follows from the
equivalence (4.1). O

The Aj-subgroups in the first row of (4.13) are isomorphic to PSU(2) and the A;-
subgroups in the second row are isomorphic to SU(2).

4.4.2 Aj-subgroups of (Sp(1) x Sp(3)) /u5

We apply the same argument for A;-subgroups of (Sp(1) x Sp(3))
orem 5.1.3], the set of conjugacy classes of morphisms SU(2) — Sp(3
partitions of 6 in which each odd number appears even times.

/u3'- By | , The-
) are in bijection with
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Lemma 4.4.3. (1) There are 7 different conjugacy classes of A;-subgroups of Sp(3), which
correspond to the following partitions of 6:

(6], [4, 2], [4, 1], [3%], [2%], [2%, 17], 2, 1%).

(2) There are 11 different conjugacy classes of Ai-subgroups of ¥y that are contained in
the subgroup (Sp(1) x Sp(3)) /us given in §4.4.2. The restrictions of the 26-dimensional
irreducible representation Jo of Fy to these Aq-subgroups correspond to the following partitions
of 26:

[9,7,5%, 5%, 3% 12, [5,37], [3%,1%],

4.14

9,62 5] (5% 42,8,2%, 1, [5,4%,17), 542, 8%, 2] [3, 20,1, f3. 2 w7 v, (4
Proof. The assertion (1) follows directly from | , Theorem 5.1.3]. A morphism from
SU(2) to (Sp(1) x Sp(3)) /us arises from the product of two morphisms SU(2) — Sp(1) and
SU(2) — Sp(3). The assertion (2) follows from the equivalence (4.3). O

The Aj-subgroups in the first row of (4.14) are isomorphic to PSU(2) and the A;-
subgroups in the second row are isomorphic to SU(2).

4.4.3 A, subgroups of (SU(3) x SU(3)) /u%

The restriction of the standard representation V3 of SU(3) to an Aj-subgroup of SU(3)
can only be [3] or [2,1]. By the equivalences (4.5) and (4.8), we have the following result:

Lemma 4.4.4. There are 8 different conjugacy classes of Ai-subgroups of ¥y that are con-
tained in the subgroup (SU(3) x SU(3)) /us given in §4.5.3. The restrictions of the 26-
dimensional irreducible representation Jo of Fy to these Aj-subgroups correspond to the
following partitions of 26:

[5°,3%, 1%, 5, 37], [3%,1%]

4.15
[5,47,3% 27, [4%,3%, 2% 1], [3%,2°,1°], [3,2%,17], [2°, 1™]. (4.15)

The Aj-subgroups in the first row of (4.15) are isomorphic to PSU(2) and subgroups in
the second row are isomorphic to SU(2).
4.4.4 Conclusion

Now we have enumerated (up to conjugacy) all Aj-subgroups of F, and indexed them by
the restriction of the 26-dimensional irreducible representation Jy of Fy.

Proposition 4.4.5. (1) There are 7 conjugacy classes of subgroups of ¥4 that are isomorphic
to PSU(2), corresponding to the following partitions of 26:

[17,9],[11,9,5,1],[9,7,5%, [7%,1°],[5%, 3%, 1%], [5, 37], [3%, 17].

(2) There are 7 conjugacy classes of subgroups of ¥y that are isomorphic to SU(2), corre-
sponding to the following partitions of 26:

[9,62,5], [5%,4%,3,2% 1], [5,4%,1°], [5,4%, 3°, 2], [4%, 3%, 2% 1], [3%, 25, 17], [3, 2%, 17], [2°, 1.
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The theory of Jacobson-Morozov shows that the set of conjugacy classes of morphisms
SU(2) — Fy is in bijection with the set of nilpotent orbits of the semisimple Lie algebra fy.
The nilpotent orbits of f4 are labeled in | , §8.4], and we will use the same labelings for
Aq-subgroups of Fy:

Label | Restriction of Jg Label | Restriction of Jy || Label | Restriction of J,
A, [26, 114] A+ Ay | [42,33,24 1] B; [73,1°]
Ay [3,28,17] B, [5,44,1°] Cy [9, 62, 5]
AL+ A 33,25, 1°] Ap+ Ay | [5,42,3,22] || Fy(ap) [9,7,5?]
A, (36, 18] Cs(ar) | [52,42,3,22,1] || Fu(ar) [11,9,5, 1]
A, 5, 37] Fy(as) 5, 3%, 17] Fy 17,9]

Table 2: Labels of A;-subgroups of Fy

Notation 4.4.6. With Table 2, for a conjugacy class of A;-subgroups of Fy, we have two
ways to refer to it. For example, for the conjugacy class of principal PSU(2), we call it the
class [17,9] or the class with label Fy.

4.4.5 Centralizers

The next thing we are going to do is to compute the centralizer, or the neutral component
of the centralizer, of each Aj-subgroup of F4. In the following paragraphs, we choose a
representative SU(2) — F for each conjugacy class of Aj-subgroups, whose image is denoted
by X, and then determine Cy, (X) or Cg,(X)°.

The following lemma will be used when computing the centralizer of a subgroup in Fy:

Lemma 4.4.7. Let G be the quotient of a Lie group G by a finite central subgroup I'. If Hy
is a connected subgroup of Gy, whose image in G is denoted by H, then the inverse image of

Ce(H) in Gg is Cg,(Ho) and Co(H) ~ Cg,(Hp)/T.

Proof. Tt suffices to prove that any gy € Gy whose image g lies in Cq(H) centralizes Hy. For
any hyg € Hy with image h in H, we have ghg~'h™! = 1 in G, thus gohogy 'hy' € T'. The
continuous map ¢ : Hy — ', hy — gohogo_lhg1 for hg € Hy must be constant, because H is
connected and I' is discrete as a finite group. The map ¢ sends 1 € Hyto 1 € T', thus ¢ =1,
which implies that gy centralizes Hy in Gj. ]

In some cases we can not compute the centralizer Cy, (X) easily, then we use the following
lemma to determine its neutral component Cp, (X)°:

Lemma 4.4.8. Let H be a connected subgroup of a compact Lie group G, and d the mul-
tiplicity of 1 in the restriction of the adjoint representation g of G to H. If there is a
d-dimensional connected subgroup C of Cq(H), then we have Cq(H)® = C. In particular,
the centralizer Co(H) is a finite group when d = 0.
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Proof. As subalgebras of g, the Lie algebra Lie(Cg(H)°) of Ce(H)° is contained in
Cy(H) :={X €g|Ad(9)X = X for all g € Hc},

where H¢ is the complexification of H. The dimension of C4(H) equals the multiplicity d of

Let ¢ be the complexified Lie algebra of C. We have the inclusions ¢ C Lie(Cg(H)°) C
Cqy(H). Since dim ¢ = d = dim Cy(H ), these three subspaces of g are equal. It is well known
that a connected Lie group is generated by a neighborhood of the identity element, thus the
connected subgroups C' and Cg(H)° of G coincide. O

4.4.5.1 [17,9] We choose X to be the principal PSU(2) in F4, whose centralizer in Fy is
trivial.

4.4.5.2 [11,9,5,1] We choose X to be the principal PSU(2) of the Spin(9) given in §4.3.1.
The restriction of the adjoint representation §, of Fy to X corresponds to the partition
[15,11%,7,5, 3] of 52, which implies that C,(X) is a finite group by Lemma 4.4.8.

4.4.5.3 [9,7,5?] We choose X to be the principal PSU(2) of the (Sp(1) x Sp(3)) /u% given
in §4.3.2. The restriction of the adjoint representation f, to X corresponds to the partition
[112,9,7, 5,33 of 52, thus Cp,(X) is a finite group by Lemma 4.4.8.

4.4.5.4 [73,15] We choose X to be the principal PSU(2) of the factor Gy in the subgroup
G3xSO(3) given in §4.3.4. The other factor SO(3) of Go xSO(3) centralizes this A;-subgroup

X. The restriction of the adjoint representation f4 of Fy to X corresponds to the partition
[11,75,3,13] of 52, thus Cr,(X)° is the SO(3) in Gy x SO(3) by Lemma 4.4.8, which is in

the class [5,37] and labeled by A,.

4.4.5.5 [5%,33,1%] We choose X to be the principal PSU(2) of the (SU(3) x SU(3)) /u%
given in §4.3.3. The restriction of the adjoint representation 4 of Fy to X corresponds to
the partition [72, 5%, 3% of 52, thus Cr,(X) is a finite group by Lemma 4.4.8. The center of
(SU(3) x SU(3)) /us', which is a cyclic group of order 3, is contained in Cp,(X).

4.4.5.6 [5,37] We choose X to be the factor SO(3) in the subgroup Gy x SO(3) of F4 given
in §4.3.4. In the proof of Proposition 4.3.13, we have shown that the centralizer Cg,(X) is
the other factor Gs.

4.4.5.7 [3% 18] We choose X to be the principal PSU(2) of the second copy of SU(3) in
the subgroup (SU(3) x SU(3)) /u5* given in §4.3.3. The first copy of SU(3) centralizes X and
has dimension 8. The restriction of the adjoint representation f; of F4 to X corresponds to
the partition [5, 33, 18] of 52, thus Cy, (X)° is the first copy of SU(3) in (SU(3) x SU(3)) /us
by Lemma 4.4.8, whose roots are short roots of Fy.

39



4.4.5.8 [9,6%,5] We choose X to be the principal SU(2) of Sp(3), and X to be the image
of Xy in the subgroup (Sp(1) x Sp(3)) /u% given in §4.3.2. The group (Sp(1) x Sp(3)) /u? is
defined as Cg,(7), where 7 is an involution in Fy and is the image of (1, —I3) € Sp(1) x Sp(3)
in the quotient group.

Since X contains the element 7, the centralizer of X in Fy, is contained in Cg,(7) =
(Sp(1) x Sp(3)) /ug, thus Cp,(X) = Csp)xsp(3)/us (X). By Lemma 4.4.7, we have:

Csp(n)xsp@)/ua (X) = Copyxspa (1 X Xo) /5 = (Sp(1) x Z(Sp(3)))/ 5 =~ Sp(1).

Hence C,(X) is an Aj-subgroup in the class [2, 1'*] and labeled by A;.

4.4.5.9 [52,42,3,22.1] We choose X to be the image of
SU(2) = Sp(1) x Sp(2) = Sp(3),

where the first arrow is the principal morphism of Sp(1) x Sp(2), and the second is de-
fined as (z,A) — (£9), for any = € Sp(1),A € Sp(2). Let X be the image of X, in
(Sp(1) x Sp(3)) /1 = Cr, (7).

The element v corresponds to (1, —I3) in Sp(1) x Sp(3), thus it is contained in X, so
Cr, (X) C Cr,(7) and Cr, (X) = C(gp1)xsp(s))/us (X). Again by Lemma 4.4.7, we have:

C(Sp(l)XSp(?)))/uzA (X) = Cspyxsp) (1 x Xo) Juy = (Sp(1) x (71) X (72)) iy

10

where v, = (‘81 g %) and 7y, = (8 ! 781> are two order 2 elements in Sp(3). Hence Cp,(X)

is the product of Sp(1) and an order 2 group, and this Aj-subgroup Sp(1) is in the class
26, 111] and labeled by A;.

4.4.5.10 [5,4* 1°] We choose a morphism:
SU(2) < Spin(5) < Spin(5) x Spin(4) — Spin(9) < Fy,

where the first arrow is the principal morphism of Spin(5), and the subgroup Spin(9) of F,
is defined as Cg,(0) in §4.3.1. This morphism is injective since the factor Spin(5) has zero
intersection with the kernel of Spin(5) x Spin(4) — Spin(9), and we denote its image by X.

The element o defined in §4.3.1 is contained in X, hence the centralizer of X in Fy is
contained in Spin(9), thus Cp,(X) = Cgpin(9)(X). Denote the natural projection Spin(9) —
SO(9) by p. The centralizer of p(X) in SO(9) is SO(4), the image of Spin(4) under p. By
Lemma 4.4.7, we have

Copino (X) = p~'(SO(4)) = Spin(4) =~ SU(2) x SU(2),

and as a result Cp,(X) is the product of two A;-subgroups in the class [2°, 111].
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4.4.5.11 [5,4% 33,2?] We choose an embedding:
SU(2) < Sp(1) x SO(3) < Sp(1) x Sp(3),

where the first arrow is the principal morphism of Sp(1) xSO(3), and the embedding SO(3) —
Sp(3) is given by viewing an orthogonal 3 x 3 matrix as an matrix in GL(3,H) preserving
the standard Hermitian form on H3. Let X, be the image of this embedding, and X the
image of X in the subgroup (Sp(1) x Sp(3)) /u5 = Crg,(7) of Fy given in §4.3.2.

The group Xy contains (—1,I3), thus the element 7 is contained in X. So the centralizer
Cr, (X) is contained in Cr,(v) and Cr,(X) = C(gpyxsp()/us (X)- By Lemma 4.4.7, we have

Cspnyxsp@yua (X) = (Z(Sp(1)) x Csp(s)(SO(3))) /1y = Cspa) (SO(3)) .

A 3x3 matrix in Sp(3) commutes with all elements in SO(3) if and only if it is a scalar matrix,
thus it must be of the form A - I3 for some norm 1 element h € H. Hence C,(X) ~ Sp(1) is
an Aj-subgroup in the class [32%,2° 15] and labeled by A; + A;.

4.4.5.12 [4%33,2* 1] We choose a morphism:
Spin(3) < Spin(3) x Spin(3) x Spin(3) — Spin(9) = Cg,(0) — Fy,

where the first arrow is the diagonal embedding. This is also an embedding and we denote
its image in Fy by X.

Again we have Cy, (X)) = Cgpin(9)(X ), and by Lemma 4.4.7, the centralizer of X in Spin(9)
is the inverse image in Spin(9) of the subgroup

anls appls asls a11 aiz2 A3
asilz agls agsls Qo1 G2 Qo3 | € 50(3)
asilz agls assls a31 daz2 G33

of SO(9). Hence Cf,(X) ~ Spin(3) is also an A;-subgroup in the class [4%,33,2% 1].

4.4.5.13 [33,2°/15] We denote by X the image of Sp(1) < Sp(3) given by h s hl3, and
by X the image of X under the embedding of Sp(3) into the group (Sp(1) x Sp(3)) /us =
Cr,(y) given in §4.3.2.

The element v = (1, —I3) (modulo u5') is contained in X, so the centralizer Cp,(X)
equals Cgp(1)xsp(s))/ue (X)- By Lemma 4.4.7, we have

C(Sp(l)xSp(?;))/,uQA (X) = CSp(l)xSp(3)(1 X XO)//vbzA = (Sp(l) X Csp(3) (XO)) /MzA-

A 3 x 3 matrix A € Sp(3) commutes with hl3 for all norm 1 quaternions h, if and only
if all entries of A are real. Hence Cgp3)(Xo) = GL(3,R) N'Sp(3) = O(3), and as a result
Cr, (X) =~ Sp(1) x SO(3) is the product of two Aj-subgroups in the classes [25, 114] and [5, 37]
respectively. These two Aj-subgroups are labeled by A; and ANQ respectively.
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4.4.5.14 [3,28,1"] We choose a morphism:
Spin(3) < Spin(3) x Spin(6) — Spin(9) = Cy, (o) — Fy,

which is injective, and denote by X its image in Fjy.
The element ¢ is contained in X, thus Cg,(X) = Cgpin(e)(X). Again by Lemma 4.4.7,
this centralizer is the group Spin(6) in the morphism we choose.

4.4.5.15 [25 1% We choose X to be the factor Sp(1) in the (Sp(1) x Sp(3)) /u2 given in
§4.3.2. Using Lemma 4.4.7, we obtain that the centralizer Cg,(X) is the other factor Sp(3).

4.5 Connected simple subgroups

In this subsection, we will classify connected simple subgroups of F; whose ranks are
larger than 1, and then determine their centralizers in Fy.
Let H be a proper connected simple subgroup of F, whose rank is larger than 1. It is (up

to conjugacy) contained in one of the following four maximal proper connected subgroups
classified in §4.3:

Spin(9), (Sp(1) x Sp(3)) /uz', (SU(3) x SU(3)) /5, G2 x SO(3).

Moreover, by | , Theorem 14.2] the group F, has no simple S-subgroup except the
principal PSU(2), so we have:

Lemma 4.5.1. Let H be a proper connected simple subgroup of ¥4 with rank H > 2, then
up to conjugacy H is contained in one of the following fized subgroups of Fy:

Spin(9), Sp(3), (SU(3) x SU(3)) /b
The possible Lie types for H are:
Ay, Az, Ay, Bo, B3, By, C3, Cy, Dy, Go.
Proposition 4.5.2. There are no connected subgroups of F4 whose Lie type is Ay or Cy.

Proof. Suppose that F4 admits a connected subgroup H with type A4 or C4. Since rank(H) =
4, by Lemma 4.5.1 there exists an embedding of H into Spin(9).

The case that H is of type C, is impossible, because dim H = 36 = dim Spin(9) but H
and Spin(9) have different Lie types. Hence H has type Ay. The morphism H < Spin(9) —
SO(9) gives H a self-dual 9-dimensional representation of H, which leads to contradiction
since the A -type group H does not admit such a representation. O

4.5.1 Cases except A,

In the remaining possible Lie types for connected simple subgroups of Fy, the type A, is
more complicated. So we first look at the other types:
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Proposition 4.5.3. (1) For each type among
A37 BQ; B3a B47 C3a D47 G27

there exists a simply-connected subgroup of ¥4 with this type.
(2) Let H be a connected compact Lie group such that it admits an embedding into F, and
its Lie type is among

A3, Bg, B3, By, C3, Dy, Go.

Then H is simply-connected and the embedding H — F4 is unique up to conjugacy.

Before proving this proposition case by case, we explain our strategy. Fixing a Lie type,
we first construct an embedding ¢q from the simply-connected compact Lie group Hy of the
given type into Fy. We claim that to prove Proposition 4.5.3(2) for this Lie type, it suffices
to show that for any connected simple compact Lie group H of the same type with Hy,
i.e. H is isomorphic to the quotient of Hy by a finite central subgroup, and any embedding
¢ . H — Fy4, the restriction of the 26-dimensional irreducible representation Jo along ¢ is
unique, up to equivalence of Hy-representations. Here we view the restriction of Jq along
¢ : H — F, as a representation of Hy by the composition with a central isogeny Hy — H.

Proof of the claim. For a connected compact Lie group H of the same Lie type as Hy and
an embedding ¢ : H — F,, we can lift ¢ to a morphism ¢ o7 : Hy — F,4 via a central
isogeny ¢ : Hy — H. This morphism ¢ o i is conjugate to ¢y by the uniqueness of Jo|p, and
Proposition 4.2.1, thus ¢ is injective, which implies that H is also simply-connected. For any
two embeddings ¢, ¢’ : H — Fy, applying Proposition 4.2.1 to ¢ o7 and ¢’ o 7, we have ¢ o
and ¢’ o7 are conjugate in Fy, thus ¢ and ¢’ are conjugate. Il

4.5.1.1 B, In this case Hy ~ Spin(9) and we take ¢o to be Hy ~ Spin(9) — F,, where
Spin(9) < F, is constructed in §4.3.1.

For any embedding ¢ from a By-type connected compact Lie group H into Fy, by
Lemma 4.5.1 the image Im(¢) (up to conjugate) is a subgroup of the Spin(9) in Fy, thus ¢
factors through an embedding H — Spin(9). This embedding must be an isomorphism, so
the restrictions of Jy along ¢y and ¢ are equivalent as Hy-representations.

4.5.1.2 D, In this case Hy ~ Spin(8) and we take ¢, to be the composition of the natural
embedding Sping < Spin(9) with Spin(9) — F,.

For any embedding ¢ from a Dy-type connected compact Lie group H into Fy, by
Lemma 4.5.1, ¢ (up to conjugacy) factors through an embedding H — Spin(9). The restric-
tion of the 9-dimensional irreducible representation Vg to H is isomorphic to either 1+ Vg or
1 +V§Lpin or 1+ Vg, where Vy is the standard 8-dimensional representation of Spin(8), and
Vétpin are two 8-dimensional spinor representations of Spin(8). For those three possibilities,
we obtain the same equivalence class of Jo| g, which is equivalent to 1%% + Vg + Vg, + Vg .
as Hy-representations. This representation is stable under the outer automorphisms of Hy,
so the restriction of Jy along ¢ is unique, up to equivalence of Hy-representations.
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4.5.1.3 Aj; In this case Hy ~ SU(4), and we take ¢, to be the composition of the natural
embedding SU(4) ~ Spin(6) < Spin(9) with Spin(9) — Fy.
For any embedding ¢ from a As-type connected compact Lie group H into Fy4, by
Lemma 4.5.1, ¢ (up to conjugacy) factors through an embedding from H to Sp(3) or Spin(9).
If ¢ factors through Sp(3), then the image of ¢ gives a As-type subgroup of Sp(3). This
subgroup of Sp(3) must be regular, but this contradicts with the Borel-de Siebenthal theory.
If ¢ factors through Spin(9), the standard representation Vg of Spin(9) gives a self-dual
9-dimensional representation of H. Up to equivalence, there are two possibilities for the
restriction of Vg to H:
1% + A2V or 14V, + V),

where Vy is the standard 4-dimensional representation of SU(4) and V} is its dual. For both
cases, the restriction of the irreducible representation J, of F4 along ¢ is isomorphic to

14 VP2 + (V)2 4 A%V,

This representation is stable under the outer automorphism of Hj, so the restriction of Jg
along ¢ is unique, up to equivalence of Hy-representations.

4.5.1.4 Bz In this case Hy ~ Spin(7), and we take ¢, to be the composition of the natural
embedding Spin(7) < Spin(9) with Spin(9) — F,.

For any embedding ¢ from a Bs-type connected compact Lie group H into Fy, by
Lemma 4.5.1 and the Borel-de Siebenthal theory, ¢ (up to conjugacy) factors through an
embedding from H to Spin(9). The restriction of the standard representation Vg of Spin(9)
to H must be isomorphic to either 192 + V; or 1 + Vspin, Where V7 is the standard 7-
dimensional representation of Spin(7), and Vgpi, is the 8-dimensional spinor representation
of Spin(7). For both cases, the restriction of the irreducible representation J, of F4 along ¢
is isomorphic to

1%+ V, + VE2

Spin*

Hence the restriction of Jy along ¢ is unique, up to equivalence of Hy-representations.

4.5.1.5 C3 Inthiscase Hy ~ Sp(3), and we take ¢ to be Sp(3) = (Sp(1) x Sp(3)) /us —
F,, where the subgroup (Sp(1) x Sp(3)) /u3 is given in §4.3.2.

For any embedding ¢ from a Cs-type connected compact Lie group H into Fy, by
Lemma 4.5.1, ¢ (up to conjugacy) factors through a central-kernel morphism from Hj to
Sp(3) or Spin(9).

If ¢ factors through Spin(9), then the standard representation Vg of Spin(9) induces an
orthogonal 9-dimensional representation of Sp(3). However, each non-trivial irreducible or-
thogonal representation of Sp(3) has dimension larger than 9, which leads to a contradiction.

If ¢ factors through Sp(3), then the embedding H — Sp(3) must be an isomorphism. This
implies that the restriction of the irreducible representation Jq of Fy along ¢ is isomorphic
to Vgﬂ + Vi4, where Vg and Vi, stand for the same representations in (4.3). Hence the
restriction of Jy along ¢ is unique, up to equivalence of Hy-representations.
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4.5.1.6 By In this case Hy ~ Sp(2) ~ Spin(5), and we take ¢y to be the composi-
tion of the natural embedding Sp(2) < Sp(3) < (Sp(1) x Sp(3)) /us with the embedding
(Sp(1) x Sp(3)) /us < Fy given in §4.3.2.

For any embedding ¢ from a Bs-type connected compact Lie group H into Fy, by
Lemma 4.5.1 and the Borel-de Siebenthal theory, ¢ (up to conjugacy) factors through an
embedding from H to Sp(3) or Spin(9).

If ¢ factors through Sp(3), then the restriction of the standard representation Vg of Sp(3)
to H must be isomorphic to 192 4+ V,, where V is the standard 4-dimensional symplectic
representation of Sp(2). The restriction of the irreducible representation Jo along ¢ is iso-
morphic to 1¥°4+ V4 +V;, where Vi is the standard 5-dimensional orthogonal representation
of Spin(b).

If ¢ factors through Spin(9), then the restriction of the standard representation Vg to H
must be isomorphic to 1%4 + V5 or 1 + V§2. For these two possibilities, the restriction of J,
along ¢ is isomorphic to 1¥° 4 Vf'f4 + V5. Hence the restriction of Jy along ¢ is unique, up
to equivalence of Hy-representations.

4.5.1.7 Gy In this case Hy ~ Gy, and we take ¢y to be the embedding Gy — Gy X
SO(3) < Fy, as given in §4.3.4.

Combining Lemma 4.5.1 and the fact that all non-trivial representations of Gs have
dimension larger than 6, any embedding ¢ from a Go-type connected compact Lie group H
into F4 (up to conjugacy) factors through an embedding from H to Spin(9). The restriction
of the standard representation Vg of Spin(9) to H must be isomorphic to 192 + V7, where
V7 is the same as in (4.10). So the restriction of the representation Jy of Fy along ¢ must
be isomorphic to 1% + Vgﬁ. Hence the restriction of Jy along ¢ is unique, up to equivalence
of Hy-representations.

4.5.2 The case A,

For the Lie type As, our idea is the same with the proof of Proposition 4.5.3, but this
time we have several conjugacy classes of embeddings from a As-type group to Fy.

Proposition 4.5.4. (1) There are 3 conjugacy classes of embeddings from SU(3) to Fy,
(2) There is a unique conjugacy class of embeddings from PSU(3) = SU(3)/Z(SU(3)) to Fy.

Proof. By Lemma 4.5.1, any embedding ¢ from a connected As-type compact Lie group H
to Fy (up to conjugacy) factors through Spin(9) or Sp(3) or (SU(3) x SU(3)) /u5'.

We start from the case that ¢ factors through (SU(3) x SU(3)) /u4'. Fix an embedding ¢ :
(SU(3) x SU(3)) /us* — F4 such that the restriction of the irreducible representation Jg of F
along this embedding is isomorphic to (4.6). We denote the outer automorphism of SU(3) by
0. Tt is easy to classify the conjugacy classes of embeddings ¢ : H < (SU(3) x SU(3)) /u%,
where H is a connected As-type compact Lie group, i.e. H ~ SU(3) or PSU(3). We list the
conjugacy classes as follows:
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Index H (0 The restriction of Jg along ¢ =10
1 SU(3) g (g,1) (V3 + V)3 + 503
2 SUBB) | g~ (1,9) 198 4 (Vg + V§)©®3
3 PSUB) | g~ (9,9) 192 4 57
4 SU@3) | g+ (g9,0(9)) | Vs V4 + Sym? V3 + Sym? Vi + sl3

Table 3: Embeddings from A,-type connected compact Lie groups to (SU(3) x SU(3))/us

The representations of SU(3) appearing in this table have been explained in §4.3.3. If we
choose the embedding ¢ to be the one corresponding to (4.5), then by Proposition 4.2.1 we
get the same conjugacy classes of embeddings.

If ¢ factors through Sp(3), the standard representation Vg of Sp(3) gives a self-dual
6-dimensional representation of H, thus the restriction of Vg to H must be isomorphic to
V3 + V5. So the restriction of Jy to H is isomorphic to (V3 + V5)®3 + sl3.

If ¢ factors through Spin(9), the standard representation Vg of Spin(9) gives a self-dual
9-dimensional representation of H, thus the restriction of Vg to H must be isomorphic to
1% + V3 + V4 or 1 + sl3. For the first case, the restriction of Jy to H is isomorphic to
198 4+ (V3 4+ V5)®3 and for the second case, the restriction of Jy to H is isomorphic to
192 4 5152,

In conclusion, combining Proposition 4.2.1 with our analysis on the restriction of Jg, we
get that every embedding from a connected As-type compact Lie group to Fy is conjugate
to one of the embeddings ¢ = ¢ 0 in Table 3. 0

4.5.3 Centralizers

Similarly with the arguments in §4.4.5, using Lemma 4.4.7 and Lemma 4.4.8, for each
conjugacy class of embeddings from a connected simple compact Lie group to Fy, we can
determine its centralizer in Fy:

o Type By: the centralizer is a cyclic group of order 2.
o Type Dy: the centralizer is isomorphic to Z/27Z x Z/27Z.
« Type As: the centralizer is an Aj-subgroup in the class [3, 2%, 17], which is labeled by

A

« Type Bs: the centralizer is the product of a rank 1 torus with a cyclic group of order
2.

o Type Cs3: the centralizer is an A;-subgroup in the class [2°, 1], which is labeled by
Ay

14] .

« Type Gy: the centralizer is an A;-subgroup in the class [5,37], which is labeled by As.
o Type Ay: Let ¢ : H — F4 be a representative of a conjugacy class of embeddings listed
in Table 3, which is indexed by a number from 1 to 4.

(1) If ¢ is indexed by 1, then its centralizer is conjugate to the SU(3) indexed by 2.
(2) If ¢ is indexed by 2, then its centralizer is conjugate to the SU(3) indexed by 1.
(3) If ¢ is indexed by 3, then its centralizer is finite and contains an order 3 element.

o Type Bsy: the centralizer is the direct product of two A;-subgroups in the class [2°, 1
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(4) If ¢ is indexed by 4, then its centralizer is a cyclic group of order 3.

4.6 Connected subgroups satisfying certain conditions

After a long journey of classifying conjugacy classes of connected simple subgroups of Fy
and computing their centralizers in F4, we are finally able to enumerate all the connected
subgroups H of F, satisfying our three conditions listed in the beginning of §4.

We first classify all the connected subgroups H of Fy such that Cy,(H) is an elementary
finite abelian 2-group, via our classifications in §4.4 and §4.5.

Notation 4.6.1. From now on, for an A;-subgroup of Fy, if its conjugacy class corresponds
to the partition p of 26, we will simply denote this A;-subgroup by Af. For example, we will
denote the principal PSU(2) of Fy by A[11779}' For an As-type subgroup of Fy, if its conjugacy
class is indexed by n € {1,2,3,4} in §4.5.2 Table 3, then we denote it simply by Ag’“

Now let H be a connected subgroup of Fy whose centralizer in Fy is an elementary finite
abelian 2-group. Let ® be the root system of H, and we can write it as a disjoint union of

irreducible root systems:
O=>0, - UD,.

We denote by m the number of ¢ € {1,2,..., s} such that ®&; ~ A;.

Lemma 4.6.2. If s = 1, i.e. H is simple, then H is conjugate to one of the following
subgroups of Fy:
2
Fa,Spin(9), Spin(8), Ay ™", A7, AP
Proof. By our computations in §4.4.5 and §4.5.3, we have if the centralizer of H in Fy is
finite, then it must be conjugate to one of the following subgroups of Fy:
Fi, Spin(9), Spin(8), ASY, ALY, AL, ARSI ADTS APRSNE,

According to § 4.4.5.5 and §4.5.3, if H is in the conjugacy class of A§3),A(24) or A[153’33’12},
then the centralizer of H in F, contains an element of order 3. OJ

Lemma 4.6.3. If s > 1 and m = 0, then there is no such H satisfying Cg,(H) is an
elementary finite abelian 2-group.

Proof. Since s > 1 and m = 0, the irreducible root systems ®; and ®5 both have rank 2 and
s = 2. Hence H must be isomorphic to the quotient of SU(3) x SU(3) by a finite central sub-
group. By our classification in §4.5.2, H is conjugate to the subgroup (SU(3) x SU(3)) /u%
constructed in §4.3.3. However, the centralizer of this subgroup contains its center, which is
a cyclic group of order 3, so in this case there is no H whose centralizer in F is an elementary
finite abelian 2-group. 0

Lemma 4.6.4. If s =2 and m > 1, then H is conjugate to one of the following subgroups
Of F4.’

(AP 8p(3)) /g, (AP#H) s Spin(s) ) /g, AP x G,
AT AT (AP AT ) s (AT AT

5,44,15 3,28.17 5,42 33 22 33 26.15] 4233 941 4233 941
(AP AP#T) ppg, (AP ) g, (AR A g
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Proof. Since s = 2 and m > 1, up to conjugacy H is of the form (X x Hy)/I', where X
is an Aj-subgroup of Fy, Hy is a connected simple subgroup of Fy, and I' is either trivial
or the subgroup u2 of X x Hy. Since the centralizer of H in Fy is an elementary finite
abelian 2-groups, the centralizer of Hj in C,(X) and the centralizer of X in Cp,(X) are
both elementary finite abelian 2-groups.

If rank(Hy) > 1, by §4.5.3 we have the following possibilities for the conjugacy class of
H:

(A 5 s (A ), A

If Hy is also an Aj-subgroup of Fy, by §4.4.5 we have the following possibilities for the
conjugacy class of H:

A[173,15] % A[15,37]7 (A[19,62,5] % A[26,114]> Ju 2A7 (A[152’42’3’22’ I« [26 114] ) / pud,
5,44,15 3,2817] [5,42,33,22 33,261 42 33 941 42 33 941
(AP AP fpag, (AP AP fpg, (AR AR) g

Lemma 4.6.5. If s > 2, then H 1is conjugate to one of the following subgroups of F4:

(AP AP Sp(2)) /s
5,37 33,26,15 26,114]
AP (AP AT
(A[15744715] % A[1267114] % A[1267114]> /MzA,
(A[13,28,17] v A[13,28,17] < A[13,28,17]> J{(1,-1,-1), (=1, -1,1)),
4
HA[26 114 /N2A — (A[1267114] % A[1267114] % A[1267114] % A[1267114]) /NZA.
=1

Proof. This follows from a similar argument as in the proof of Lemma 4.6.4 and the results
in §4.4.5 and §4.5.3. ]

In Lemma 4.6.2, Lemma 4.6.3, Lemma 4.6.4 and Lemma 4.6.5, we have enumerated all
the conjugacy classes of connected subgroups H of Fy such that the centralizer of H in Fy
is an elementary finite abelian 2-group. There are 20 such conjugacy classes, but some of
them do not satisfy the third condition given in the beginning of §4:

Lemma 4.6.6. If a subgroup H of ¥y is conjugate to one of the following subgroups:
2 8 17 . 2 42 2 6 114
A[111,9,5,1]’A[19,7,5 ]’ (A[13’2 A7 Spm(5)) /M2A7 <A[15 A23220] A[f Bl ]) /M2A7

(AP AP g APFD o APF o ARF (1, -1, -1), (<1, -1,1)),

then the zero weight appears 4 times in the restriction of the 26-dimensional irreducible
representation Jo of Fy to H.
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Proof. The restrictions of the representation Jy of Fy to the two Aj-subgroups in the list
above can be read from their corresponding partitions. In both cases, the multiplicity of the
zero weight in Jo|y is 4.

If H is conjugate to <A[13’28’17] X Spin(5)> /5, then the restriction Jo|p is isomorphic to

(1%2 + Sym?St) ® 1 + St¥* @ V4 + 1 ® Vs,

in which the zero weight appears 4 times.
. . [52,42,3,22,1] [26,114] A .. .. .
If H is conjugate to ( A} X Aj /15, then the restriction Jo|y is isomorphic

to
((Sym* St)®* + Sym* St + 1) ® 1 + (Sym® St + St) ® St,

in which the zero weight appears 4 times.
4
If H is conjugate to (A[15’4 R A[13’28’17]> /5, then the restriction Jo| is isomorphic to

1® (1692 + Sym? St) + (Sym3 St ® St)eBQ +Sym*St® 1,
in which the zero weight appears 4 times.
817 8 17 817
If H is conjugate to A[f”2 T AT A[f”2 ! ]/<(1,—1,—1), (—1,—1,1)), then the
restriction Jo|y is isomorphic to
1+ (St®St®St)” +Sym?St®1®1+1® Sym?St®1+1®1® Sym?St,
in which the zero weight appears 4 times. O

In conclusion, we have proved the following theorem:

Theorem 4.6.7. There are 13 conjugacy classes of proper connected subgroups H of Fy
satisfying the following conditions:

(1) The centralizer of H in Fy is an elementary finite abelian 2-group.
(2) The zero weight appears twice in the restriction of the 26-dimensional irreducible rep-
resentation Jo of Fy to H.

These 13 subgroups are:
A[117’9],Spin(9),Spin(8),A[15’37] % G2’A[173,15] X A[15,37}7 <A[126,114] « Sp(3)) /M2A,
(A AR s sp(2)) s (A2 AZHY) s, (AP s 4B g

42 33 941 42 33 941 5,37 33,2615 26 114
(AL 20 s ALY gy AP (AR AR g,
4
5,44715 267114 267114 267114
(AP AR A s TT AR /8
i=1

For the 13 conjugacy classes of subgroups H in Theorem 4.6.7, in the rest of this subsec-
tion we are going to list some information will be used in §6:

o the centralizer Cg,(H) of H in Fy,
 the restriction of the 26-dimensional irreducible representation Jg to H,
o and the restriction of the adjoint representation f; of Fy to H.
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4.6.1 Al'™

This is the principal PSU(2) of F4, whose centralizer in F, is trivial. The restriction of
Jo to H corresponds to the partition [17,9] of 26, and the restriction of f4 to H corresponds
to the partition [23, 15,11, 3] of 52.
4.6.2 Spin(9)

The centralizer of H in Fy is the center of H, which is isomorphic to Z/27Z.
The restriction of Jg to H is isomorphic to

1+ Vg + Vgpin,
and the restriction of §4, to H is isomorphic to
A*Vg + Vspin,

where Vy is the standard representation of Spin(9) and Vg, is the 16-dimensional spinor
representation.

4.6.3 (A[fﬁ’l“” X Sp(3)> S

The centralizer of H in Fy is the center of H, which is isomorphic to Z/27Z.
The restriction of Jg to H is isomorphic to

St® Vg +1® Vg,
and the restriction of §4, to H is isomorphic to
Sym?St ® 1 + St ® Vi, + 1 ® Sym?* Vg,

where Vg is the standard 6-dimensional representation of Sp(3), Vi4 is the 14-dimensional
irreducible representation of Sp(3) that is a sub-representation of A*Vg, and V), is another
14-dimensional irreducible representation of Sp(3) that is not equivalent to V4. From now
on, we will denote V14 by A*Vg, and similarly for the 5-dimensional irreducible representation

of Sp(2).
4.6.4 AP q,

The centralizer of H in F, is trivial.
The restriction of Jy to H is isomorphic to

Sym? St ® V; + Sym* St ® 1,
and the restriction of §4 to this subgroup is isomorphic to
1® go + Sym?St ® 1 4+ Sym* St ® V7,

where V7 is the 7-dimensional irreducible representation of Go, and gs is the adjoint repre-
sentation of Gs.
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4.6.5 Spin(8)

The centralizer of H in F is the center of H, which is isomorphic to Z(Spin(8)) ~ Zy X Zs.
The restriction of Jy to H is isomorphic to

192 + Vg + VI 4 Vo
and the restriction of f, to H is isomorphic to
NVg + Vg + VI 4+ Vo,

where Vg is the 8-dimensional vector representation of Spin(8), i.e. the composition of
Spin(8) — SO(8) with the standard 8-dimensional representation of SO(8), and VSjEpin are
two 8-dimensional spinor representations.

4.6.6 (A[fﬁ’lm] x AR 5 Sp(2)> i
The centralizer of H in Fy is the center of H, which is isomorphic to Z/27 x Z/27.
The restriction of Jg to H is isomorphic to
1+5St@St®14+St®1V,+10St@Vi+1R01& A" Vy,
and the restriction of f, to H is isomorphic to

(Sym®St®1+1® Sym?St) ® 1+ (St® 1 +1® St) ® V4
+St®St®A*V,+1®1® Sym? V,,

where V, is the standard representation of Sp(2) and A*Vy is the 5-dimensional irreducible
representation of Sp(2).

4.6.7 AT AP

The centralizer of H in F, is trivial.
The restriction of Jg to H is isomorphic to

Sym® St ® Sym? St + 1 ® Sym* St,
and the restriction of f4, to H is isomorphic to

(Symm St 4+ Sym? St) ® 1+ 1® Sym? St + Sym® St ® Sym* St.

4.6.8 AP (AP AR Jd

The centralizer of H in Fy is the center of H, which is a cyclic group of order 2.
The restriction of Jg to H is isomorphic to
Sym* St ® 1 ® 1+ Sym® St ® (St ® St + Sym*St ® 1) ,

and the restriction of §4, to H is isomorphic to

Sym®* St ® (St ® St + Sym® St ® 1) + Sym’St® 1 ® 1
+1® (Sym*St ® 1 + 1 ® Sym? St + Sym® St @ St) .
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4.6.9 (AP AP AR

The centralizer of H in Fy is the center of H, which is isomorphic to Z/27 x Z/27.
The restriction of Jg to H is isomorphic to

1+1®St®St+Sym?*St® (St®1+1®St)+Sym*St®1®1,
and the restriction of f, to H is isomorphic to
1® (Sym”*St®1+1® Sym®St) +Sym’*St®1® 1+ Sym’ St ® (St ® 1+ 1 ® St)
+Sym? St ® St ® St + Sym®St @1 ® 1.
4.6.10 (A[P’GQ’“ X A[fﬁ’l“l]) S

The centralizer of H in Fy is the center of H, which is a cyclic group of order 2.
The restriction of Jg to H is isomorphic to

Sym® St @ St + (Sym8 St 4 Sym* St) ®1,
and the restriction of §, to H is isomorphic to

1 ® Sym* St + (Sym” St + Sym® St) @ St + (Sym'? St + Sym® St + Sym* St) ® 1.

4.6.11 <A[15’42’33’22] X A?B’QGJS}) Jud

The centralizer of H in Fy is the center of H, which is a cyclic group of order 2.
The restriction of Jg to H is isomorphic to

Sym* St ® 1 + (Sym® St + St) ® St 4+ Sym? St ® Sym* St,
and the restriction of §4, to H is isomorphic to

St © Sym? St + (Sym? St + 1) © Sym? St + (Sym? St + Sym® St) @ St + (Sym?St) ™ © 1.

4,612 (AT AR s

The centralizer of H in Fy is the center of H, which is a cyclic group of order 2.
The restriction of Jg to H is isomorphic to

1 + Sym® St ® St + Sym? St ® Sym? St + St ® Sym? St,
and the restriction of f, to H is isomorphic to

(Sym4 St + 1) ® Sym? St + Sym? St ® (Sym4 St + 1) + Sym?® St ® St 4 St ® Sym® St.
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4.613 [T, AP /b

The centralizer of H in Fy is the center of H, which is isomorphic to Z/2Z X 7 /27 x 7] 27Z.
The restriction of Jg to H is isomorphic to

12 4+) Stestelol,

Sym

where the second term stands for the direct sum of tensor products of standard representa-
6 114
tions at every two copies of A[12 i H. The restriction of f4 to H is isomorphic to

D Sym’Ste1e1el+ ) St@St®1® 1+ St®St®St® St.

Sym Sym

5 Arthur’s conjectures on automorphic representations

In this section, we are going to review the theory of automorphic representations and
Arthur’s conjectures on discrete automorphic representations. For our purposes, it is enough
to restrict to the special case of level 1 algebraic automorphic forms of a reductive group
G over Q admitting a reductive Z-model, as in | ; |. We mainly follow these two
references.

5.1 A brief review of automorphic representations

In this subsection we give a quick review on automorphic representations, following | ,
§4.3]. Let G be a connected reductive group over Q with a reductive Z-model (¥¢,id), and
Ag be the maximal Q-split torus of the center Z(G) of G. Denote by G(A)! the quotient of
G(A) by the neutral component of Ag(R), and consider the adelic quotient

(G] == G(Q\G(A)' = G(QAc(R)\G(A).

We have a left G(Q)-invariant right Haar measure g on G(A) by | , §11.9], and the
volume of [G] is finite with respect to this measure. The topological group G(A) acts on the
space £(G) := L*([G]) of square-integrable functions on [G] by right translations. Equipped
with the Petersson inner product defined as

(t1y= [ Frn

the space £(G) becomes a unitary representation of G(A). We denote the closure of the sum
of all closed and topologically irreducible subrepresentations of £(G) by Laisc(G).

Denote by II(G) the set of equivalence classes of irreducible unitary complex representa-
tions 7 of G(A) such that m = m,, ® 7y, where 7, is an irreducible unitary representation of

G(R), and 7 is a smooth irreducible representation of G(Ay) satisfying W?(Z) # 0. We have
the following decomposition:

Laise(G)72) = @ m(7) 7@ — @ m(7) Too ®7T?(Z), (5.1)
rell(G) rell(G)
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where the integers m(7) > 0 are finite due to a fundamental result of Harish-Chandra | ,
§1.2, Theorem 1]. We call the integer m(7) the multiplicity of 7 in Lgisc(G).

Now we give the definition of level one discrete automorphic representations, and refer
to | , §4] for the general definition of automorphic representations.

Definition 5.1.1. A level one discrete automorphic representation is a representation 7 of
G(A) in II(G) such that its multiplicity m(7) in (5.1) is nonzero. We denote the subset of
II(G) consisting of level one discrete automorphic representations by Ilgis.(G).

Notation 5.1.2. Since in this paper we only deal with level one automorphic representations,
so we will always omit “level one” from now on.

Definition 5.1.3. A square-integrable Borel function f : [G] — C is a cusp form if for the
unipotent radical U of each proper parabolic subgroup of GG, we have

/ flug)du =0
U(@\U(A)

for almost all g € G(A). We denote the subspace of £(G) consisting of the classes of cusp
forms by Leusp(G). A discrete automorphic representation is cuspidal if it is a subrepre-
sentation of Leusp(G), and we denote by Il.usp(G) the subset of II(G) consisting of cuspidal
representations.

Remark 5.1.4. A result of Gelfand, Graev and Piatetski-Shapiro | | asserts that
Lcusp(G) C Ldisc(G) and chsp(G) C Hdisc(G)-

When G(R) is compact, every automorphic representation of G is discrete by the Peter-Weyl
theorem.

Denote by H(G) = @, H,(G) the spherical Hecke algebra of the pair <G(Af), g(i)) For

any representation m = mo, ® 7y € II(G), the space W?(Z) is an irreducible representation of

the spherical Hecke algebra H(G). Since H(G) is commutative | , Proposition 2.10], the

dimension of W?(Z) is 1. Hence the ¢4 (z)—invariant space of the m-isotypic subspace Lgisc(G)r
of Laisc(G), as a G(R)-representation, is the direct sum of m(7) copies of 7. This implies
the following result:

p

Lemma 5.1.5. Let V' be an irreducible unitary representation of the Lie group G(R), and

Av(G) the space of G(R)-equivariant linear maps from V' to Ldisc(G)g(Z). Then we have the
following equality:

dim Ay (G) = Z m(7). (5.2)

Tell(GQ), Too =V

Remark 5.1.6. The space Ay (G) = Homgr)(V, Laise(G)?®) can be viewed as the multiplic-
ity space of V in (5.1).
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5.1.1 Automorphic representations for F,

When the reductive group G has compact refxl points, due to | ] we can describe
the multiplicity space Ay (G) of V in Lgie(G)?® in a more computable manner, which is
explained in | , §4.4.1]. Applying | , Lemma 4.4.2] to Fy and using the fact that
every irreducible representation of Fy is self-dual, we get:

Proposition 5.1.7. Let (p, V') be an irreducible representation of Fy = F4(R). The vector
space Ay (Fy4) is canonically isomorphic to the following space:

My (i) = { f s Fa(hg)/Faa(Z) = V| f(v9) = p()F(g) for all ¥ € F4(Q).g € Fa(A)} .

We choose a set of representatives {1, gg} of F4(Q)\F4(Ay)/ 3"471(2) corresponding to the
two reductive Z-models (Fy1,1id) and (Fy g, ¢) of F4 in Proposition 2.3.5. By | , Equation
(4.4.1)] the evaluation map f — (f(1), f(gg)) induces a bijection:

Mv(F4) ~ vrf4,I(Z) D V5V4,E(Z)‘

Combining the results in this section with Theorem 3.6.1, we have the following compu-
tational result:

Corollary 5.1.8. For any dominant weight N\ of Fy, we have an explicit formula for
dim Ay, (F4), where V) is the irreducible representation of Fy = F4(R) with highest weight
Ao For A = (A1, A2, A3, Ay) with 201 +3Xa+ 25+ Ay < 13, the dimension dim Ay, (F4) equals
the d(X\) in Table 6.

5.2 Local parametrization of I1(G)

Let G be a connected reductive group over Q with a fixed reductive Z-model (¢,1d). Let
G be its complex Langlands dual group, i.e. the root datum of G is the dual root datum
of G. A representation 7w € II(G) can be decomposed as T = 7o, ® (@p 7rp>, where , is a

spherical irreducible smooth representation of G(Q,) for each p, i.e. Wf (Z) # 0, and 7 is
an irreducible unitary representation of the Lie group G(R).

In this subsection, we will recall the parametrizations for spherical irreducible smooth
representations of G(Q,) and for irreducible unitary representations of G(R). Our main

reference is | , §6.2, §6.3].

5.2.1 Satake parameter

For each prime number p, a spherical irreducible smooth representation m of G(Q,) is
determined by the action of the spherical Hecke algebra H,(G) for the pair (G(Q,),¥(Z,))
on the subspace of invariants 7% Since dim7?®#) = 1, the equivalence class of 7 is
determined uniquely by the ring homomorphism H,(G) — C given by the H,(G)-action on

9(Zp)
T :
By [ , Scholium 6.2.2], the Satake isomorphism gives a canonical bijection between

the set of ring homomorphisms H,(G) — C and the set @((C)SS of semisimple conjugacy
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classes in CA}((C) This induces a bijection m +— c,(7m) between the set of equivalence classes

of spherical irreducible smooth representations of G(Q,) and the set G(C)s. The conjugacy
class c,(7) is called the Satake parameter of m,.

5.2.2 Infinitesimal character

Let g be the Lie algebra of G(C), and § the Lie algebra of G(C). We fix a Cartan
subalgebra t of g and a Borel subalgebra b C g containing t, and denote the Weyl group of
g with respect to t by W.

As explained in | , §6.3.4], we can associate a character Z(U(g)) — C to an irre-
ducible unitary representation (7,V’) of G(R), where Z(U(g)) is the center of the universal
enveloping algebra of g. By [ , Scholium 6.3.2 and Equation (6.3.1)], the Harish-Chandra
isomorphism induces the following canonical bijections:

Home a5 (Z(U(g)), C) ~ ges ~ (X7 (t) @2, C) /W, (5-3)

where gy is the set of semisimple conjugacy classes in g. Hence we associate to (m, V) a
semisimple conjugacy class ¢ (7) € s, called the infinitesimal character of 7.

As proved by Harish-Chandra | , Corollary 10.37], up to isomorphism there are
only a finite number of irreducible unitary representations of G(R) with a given infinitesimal
character. When G(R) is compact, the situation is much simpler due to the following result:

Proposition 5.2.1. [ , §7.4.6] Let G(R) be a compact group, and p € X*(t) @ C the
half-sum of positive roots with respect to (g,b,t). For a dominant weight X of G(R), the
infinitesimal character of the highest weight representation Vy of G(R) is A + p, viewed as
an element in gy via (5.3). In particular, the infinitesimal character X + p determines Vy
uniquely.

5.2.3 Langlands parametrization

Now we recall Langlands parametrization of II(G), following | , §6.4.2].

Definition 5.2.2. Let H be a connected reductive C-group with complex Lie algebra . We
denote by H(C)g (resp. bgs) the set of H(C)-conjugacy classes of semisimple elements of
H(C) (resp. b). We denote by X(H) the set of families (oo, C2,C3,Cs, - . .), Where Co € by
and ¢, € H(C)y for all primes p.

By results in §5.2.1 and §5.2.2, we associate to a representation m = ., ® (®p 7Tp) €

II(G) a conjugacy class c,(m) := ¢,(m,) in @(C)SS for each p, and a conjugacy class ¢ (7) 1=
Coo(Too) In gss. Hence we have a canonical map II(G) — X(G) defined as

T =T & <® 7rp> = ¢(m) = (Coo(m), Co(m), c3(m), -+ ) € DC(CA})

p

The family of conjugacy classes c(m) determines 7y and the infinitesimal character of 7.,
and the map c has finite fibers. When G(R) is compact, the fiber of ¢ is either empty or a
singleton.
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Definition 5.2.3. Let G be a semisimple Q-group admitting a reductive Z-model, and
r : G — SL, an algebraic representation of its dual group, which induces a map X(G) —
X(SL,). For any 7 € II(¥), we define the following family of conjugacy classes:

W(m,r) :=r(c(m)) € X(SL,),

and refer to it as the Langlands parameter of the pair (mw,r).

5.3 Global parametrization and the Langlands group

For the global parametrization of level one discrete automorphic representations, now
we need to use a conjectural group Lz, the so-called Langlands group of Z, to formulate
the global Arthur-Langlands conjecture. In Arthur’s work [ |, he uses another group
Lg. However, since we only consider level one discrete automorphic representations in this
paper, it is more convenient to use the group £z that we are going to recall, following | ,
Appendix B; , Preface].

We assume that L7 is a compact Hausdorff topological group equipped with

« A conjugacy class Frob, in £z, for each prime p,

» A conjugacy class of continuous homomorphisms h : Wg — Lz, called the Hodge mor-
phism. Here Wy is the Weil group of R, which is a non-split extension of Gal(C/R) =
{1,7} by W¢ = C*, for the natural action of Gal(C/R) on C*. It is generated by its

open subgroup C* together with an element j, with relations j? = —1 and jzj ! =%
for every z € C*.
This group £y satisfies three axioms that we will introduce one by one.
Axiom 1. (Cebotarev property) The union of conjugacy classes Frob,, is dense in Ly,
Remark 5.3.1. In | , Appendix B], the axiom they use is the general Sato-Tate conjecture:

the conjugacy classes Frob, are equidistributed in the compact group £z equipped with its
Haar measure of mass 1. This is a universal form of the Sato-Tate conjecture for automorphic
representations and it implies the Cebotarev property, but Axiom 1 is enough for us in this
article.

This axiom tells us for two homomorphisms 1,1’ from £z to some topological group H,
if ¢(Frob,) and ¢'(Frob,) are conjugate in H for each prime p, then ¢ and 1)’ are element-
conjugate. An important type of homomorphisms involving L is:

Definition 5.3.2. Let G be a reductive Q-group admitting a reductive Z-model. A discrete
global Arthur parameter (of level one) of G is a G(C)-conjugacy class of continuous group
homomorphisms

¥ Lz x SLy(C) — G(C)

such that |sr,(c) is algebraic and the centralizer Cy, of Im(7)) in G(C) is finite modulo the

center of CAJ((C) We call Cy, the (global) component group of 1, and denote the set of discrete
global Arthur parameters of G by W g;s.(G).
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Remark 5.3.3. The condition on Cy in Definition 5.3.2 implies that a discrete global Arthur
parameter for G = GL,, is an equivalence class of n-dimensional irreducible representations
of Lz x SLy(C).

In parallel with Langlands parametrization in §5.2.3, we can also associate to any ¢ €

~

Vaise (G) a collection of conjugacy classes ¢(¢) = (coo (1), c2(¥), c3(¥),- -+ ) € X(G). For each
prime p, the conjugacy class c,(1) is defined by:

~1/2
¢y (¢) == (Frob,,e,), €, = (p 0 p?ﬂ) € SLy(C).

The infinitesimal character c. (1) of ¥ is defined to be the infinitesimal character of the
archimedean Arthur parameter ¢ o (h x id) : Wg x SLy(C) — @(C), which is explained in
[ , §A.2].

The following axiom connects the collection of conjugacy classes attached to a discrete
automorphic representation and that attached to a discrete global Arthur parameter.

Axiom 2. (Arthur-Langlands conjecture for GL,, ) For every integer n > 1, there is a unique
bijection

Hdisc<GLn) :> \deisc(GLn)a T = wﬂ
such that ¢(m) = c(y) for all discrete automorphic representations w of GL,,. Moreover, the
discrete global Arthur parameter 1, is trivial on SLy(C) if and only if we have m € Ileysp(GL,,).

Remark 5.3.4. This axiom and the compactness of £z imply the so-called generalized Ra-
manugjan conjecture: for any m € Il..s,(GL,) and any prime p, the eigenvalues of c,(m) all
have absolute value 1.

For general reductive groups, we have the following third axiom:

Axiom 3. Let G be a reductive group admitting a reductive Z-model (¢,1d), then there exists
a decomposition
i

Laise(G) = @wewdisc(c)ﬂw (@), (5:4)

stable undeTAthe actions of G(R) and H(G), and satisfying the following property: for m €
I(G), if 77D appears in Ay (G), then we have c(m) = c(¢)).

This axiom tells us for any level one discrete automorphic representation m € Ilgis.(G),
there exists a discrete global Arthur parameter ¢ of G such that c¢(¢) = c(7). In general,
this discrete global Arthur parameter is not unique since two element-conjugate embeddings
into G(C) may not be conjugate. Conversely, given a discrete global Arthur parameter
of G, there are finitely many (possibly zero) adelic representations m € II(G) satisfying
c(m) = ¢(¢), and we denote the subset of II(G) consisting of such representations by IL,(G).

In other words, discrete global Arthur parameters are the objects parametrizing discrete
automorphic representations, but a natural problem that we need to deal with is that which
representations in I1,(G) for a given ¢ appear in the discrete spectrum £(G)gisc. We will
see the (conjectural) answer in §5.6.

Another property about L7 that we will use is that it is connected:

Proposition 5.3.5. [ , Proposition 9.3.4] Suppose that Lz is a compact topological
group satisfying the axioms above, then it is connected.

58



5.3.1 Sato-Tate group

For a discrete global Arthur parameter i) € Wg.(G), we pick a representative Lz X
SLy(C) — G(C) and consider its restriction to a maximal compact subgroup:

e : £z % SU(2) = G(C).

The image of this morphism is contained in some maximal compact subgroup of G (C). Fixa

maximal connected compact subgroup K of G (C), and without loss of generality we assume
that 1. is a morphism from £z x SU(2) — K.

Definition 5.3.6. For any 1) € V4;,.(G), we define H(%)) to be the K-conjugacy class of the
image of its associated morphism £z x SU(2) — K. For any 7 € Ilg.(G), if there exists a
unique global Arthur parameter ¢, € W4s.(G) such that ¢(7) = c(1)), we define H(7) to be

H(¢r).

Remark 5.3.7. Since maximal connected compact subgroups of SLy(C) are unique up to con-
jugacy, the G(C)-conjugacy class of the image of L7 xSU(2) — K is well-defined. Combining
with [ , Lemma 2.4], the K-conjugacy class H(v) is well-defined.

Remark 5.3.8. The conjugacy class H(¢), or H(7), of subgroups of K is called the “Sato-
Tate group” in the introduction §1, although it coincides with the usual Sato-Tate group (see
[ , Proposition-Definition B.1]) if and only if the restriction of ¢ to SLy(C) is trivial.

A cuspidal automorphic representation m of PGL, can be viewed as an element of
ewsp(GLy,) with trivial central character, and the global Arthur parameter ¢, associated
to 7 via Axiom 2 takes value in SL, (C) = P/GTH(C) In this case, the global Arthur param-
eter ¢, is trivial on SLy(C), and the conjugacy class H(m) of subgroups of SU(n) coincides
with the usual Sato-Tate group of .

5.4 Cuspidal representations of GL,

Arthur’s classification of automorphic representations involves self-dual cuspidal repre-
sentations of GL,,n > 1. Moreover, these representations of GL,, are trivial on the center
of GL,, when they have level one, thus we can replace GL,, by PGL,,. In this subsection we
will say more about this class of automorphic representations.

Definition 5.4.1. A representation 7 € Il..,(PGL,) is self-dual if it is isomorphic to its
dual representation 7¥, and we denote the subset of I, (PGL,) consisting of self-dual
representations by 1% . (PGL,).

cusp

Remark 5.4.2. By the multiplicity one theorem of Jacquet-Shalika, this self-dual condition
is equivalent to that c,(7) = c,(m) ™! for each prime p and c(7) = —coo ().

For a representation m € Il ., (PGL,,), its infinitesimal character c.(7) is a conjugacy
class in sl,. Denote by Weights(m) the multiset of eigenvalues of co (7).

Definition 5.4.3. A cuspidal automorphic representation m of PGL,, is

59



« algebraic ° if Weights(w) C 37 and for any w,w’ € Weights(m) we have w — v’ € Z.
o regular if |Weights(7)| = n.

We denote by IT;,(PGL,) the subset of II%, (PGL,) consisting of algebraic representations,

cusp

and by Hﬁg’reg(PGLn) the subset consisting of algebraic regular representations.

For an algebraic self-dual cuspidal representation 7 of PGL,,, let ky > ko > --- > k,, be
the weights of 7 (counted with multiplicity). Since 7 is self-dual, we have k; = —k,11_; for
i=1,2,...,n. Following [ , §1.5], we call the integers

wZ:2kl,z:1,2,,[n/2]

the Hodge weights of m and call the maximal Hodge weight w(7) := w; the motivic weight
of 7.

5.4.1 Arthur’s orthogonal-symplectic alternative

We can divide the set self-dual cuspidal representations of PGL, into two parts, by
Arthur’s symplectic-orthogonal alternative. Our reference is | , §8.3.1].

The classical groups over Z that are Chevalley groups are therefore Sp,, for g > 1,
SO, for r > 2, and SO, , for r > 1. For one of these groups G, we denote the standard

representation of G(C) by St : G(C) — SLy(c)(C). For instance, n(Spy,) = 2g-+1, n(SO,.,) =

2r and n(SO,41,) = 2r. This map St also induces a natural map from X(G) to X(SLyq)).
We have the following theorem by Arthur:

Theorem 5.4.4. | , Theorem 1.4.1] For any n > 1 and a self-dual cuspidal represen-
tation m of PGL,,, there exists a classical Chevalley group G™, unique up to isomorphism,
with the following properties:

(i) We have n(G™) = n.
(i) There exists a representation ©' € Iaise(G™) such that (', St) = c(m).

Definition 5.4.5. A representation m € II5  (PGL,) is called orthogonal if @T(C) ~

SO,.(C) and symplectic otherwise. We denote the subset of I (PGL,) consisting of orthog-

cusp
onal representations by 112, (PGL,), and the subset consisting of symplectic representations
by IL, ., (PGL,).

For * = alg or alg, reg, we define II3(PGL,) = II2,,,(PGL, ) NI, (PGL,) and I (PGL,,) =
1T, (PGL,) NII; (PGL,). We define the subset Hiﬁ;”(PGLZn) C IE,, .o, (PGLy,) as:

alg,reg

{7 € I3y 1 (PGLyy,) | Im(¢) =~ Sp(n) }

alg,reg

and similarly define

50" (PGLy,) = {7 € 113, 10 (PGL,) | Im(¢br) = SO(n) } .

alg alg,reg
Ezample 5.4.6. A representation m € Il (PGLsy) is necessarily self-dual and symplectic,
thus Ieusp (PGLy) = I, (PGLy) = II5, (PGLy). Moreover, for each positive integer w we
have a bijection between the set of level one normalized Hecke eigenforms of weight w41 and
the set of ™ € Hig(PGLQ) with Hodge weight w. In particular, level one algebraic cuspidal
representations with Hodge weight w exist only when w > 11.

9The term algebraic is in the sense of Borel | , §18.2].
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5.4.2 Global e-factor

An important factor related to a cuspidal representation 7 is its global e-factor ().
We briefly give its definition as follows: for two level one cuspidal representations m &
Hewsp(PGLy,) and 7’ € eysp (PGL,y ), Jacquet, Shalika and Piatetski-Shapiro define a factor
e(mx7") when studying the meromorphic continuation and functional equation of the Rankin-
Selberg L-function L(s, 7 x 7’) | , §9].

Definition 5.4.7. The global e-factor of m € L.y, (PGL,,) is defined as e(m) := (7w x 1).

For orthogonal algebraic representations, we have the following result by Arthur:

Theorem 5.4.8. [ , Theorem 1.5.3] If m € 115, (PGLy,,), then () = 1.
In | , §8.2.21], a method to compute (7) for 7 € II;),(PGL,) is explained. To recall
that method, we review first the archimedean Local Langlands correspondence | ]. We

can associate with each irreducible unitary representation U of GL,(R) a unique (up to
conjugacy) semisimple representation L(U) : Wg — GL,(C). By Clozel’s purity lemma
[ , Lemma 4.9], for a representation m € Hjlg(PGLn), the associated representation
L(7) is a direct sum of the following types of irreducible representations:

o the trivial representation 1,
« the sign character ec/r = n/|7|,

« and the 2-dimensional induced representation I, := Indxvvﬁ (2 2%/?z7%/2) for some

w/QEfw/2

positive integer w, where z — 2 stands for the character z — (2/Z)" by an

abuse of notation.

There is a unique way to associate a fourth root of unity €(p) with each p : Wg — GL,(C)
of the above forms such that e(p @ p') = e(p)e(p’) and

e(1) =1, e(ecr) = i, £(I,) = it for any integer w > 0.
There is a connection between this factor € (L(7)) and the global e-factor of =
Proposition 5.4.9. [ , Proposition 8.2.22] For m € II;,(PGL,), we have
g(m) = e(L(7s)).

As a consequence, we can calculate the global e-factor of 7 provided we know the repre-
sentation L(7m.) of Wg corresponding to m.,. Actually, one has the following result:

Proposition 5.4.10. / , Proposition 8.2.13] Let m € 115, (PGL,,) and wy > wy > -+ >
wy /2 its Hodge weights, then

L(7) ~ 1y, @ Lo, ©- DLy,
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5.5 Arthur-Langlands conjecture

Assuming the existence of the Langlands group £ described in §5.3. Axiom 3 says that
for any reductive group G admitting a reductive Z-model and any discrete automorphic
representation m of G, there exists a discrete global Arthur parameter ¢ : L7 x SLy(C) —
CA;((C) such that c(7) = c¢(¥).

Remark 5.5.1. When the group é((C) satisfies the “element-conjugacy implies conjugacy”
property as in Proposition 4.1.5, the discrete global Arthur parameter 1 satisfying c(¢) =
c(m), as a conjugacy class of homomorphisms Lz x SLy(C) — G(C), is unique.

Let G be semisimple, and fix an irreducible algebraic representation r : G — SL, c.
Following | , §6.4.4], we are going to see what the Langlands parameter ¢ (m,r) defined
in Definition 5.2.3 looks like for a discrete automorphic representation 7 of G.

Composing r with a discrete global Arthur parameter ¢ : L7 x SLy(C) — G(C) corre-
sponding to 7, we get an n-dimensional representation r o 1) of L7 x SLy(C). This represen-
tation can be decomposed as

k
@ r; ® Sym% 1 St
i=1

for some irreducible representations r; : £z — SL,,, and certain integers d; > 1, where St
denotes the standard 2-dimensional representation of SLy(C).

By Arthur-Langlands conjecture for general linear groups, i.e. Axiom 2 in §5.3, every
irreducible representation r; : £z — GL,, (C) corresponds to a unique cuspidal representation
m; of PGL,,. For v = p or oo, we have an identity between conjugacy classes:

r(es(m) = @ eulm) © Sym* ()

To formulate a global identity, we introduce the following notations:

o Define e € X(SLy) to be (exe, €2, €3, - - ) and denote Sym?~*(e) € X(SLy) by [d].

» Denote by (¢, ) — ¢® ¢ the map X(SL,) x X(SLy) — X(SL44p) induced by the direct
sum, and by (¢, ') = c¢®¢ the map X(SL,) X X(SL;) — X(SLg) induced by the tensor
product. We write ¢ ® [d] as c[d] for short.

o For m € I sy (PGL,,), the element ¢(7) € X(SL,,) will simply be denoted by .

With these notations, we can combine the identities for r(c,(7)) together into one:

(m,r) = r(e(r)) = QB mildi), i € Teusp(PGLy,).

Now we state Arthur-Langlands conjecture for semisimple groups:

Conjecture 5.5.2. (Arthur-Langlands conjecture) Let G be a semisimple Q-group admitting
a reductive Z-model. For any 7 € s (G) and every algebraic representation r : G — SL, ¢,
there exists a collection of triples (n;,m;,d;)i=1.. x with d;,n; > 1 integers satisfying n =
> oinid; and m; € ey, (PGLy,) such that

.....

¢(W7T) = 7Tl[dl] b---D Wk[dk]
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This conjecture was proved by Arthur in | | when G is a split classical group and
r is the standard representation of G. Moreover, the collection of triples (n;, m;,d;) in the
conjecture is necessarily unique up to permutation by a result of Jacquet and Shalika | |:

Proposition 5.5.3. / , Proposition 6.4.5] Let k,1 > 1 be integers. For 1 <i <k (resp.
1 <j <), consider integers n;,d; > 1 (resp. n},d; > 1) and a representation m; (resp. m})

in Hewsp(PGLy,) (resp. eusy(PGLy) ). Suppose that we have n =3, nid; = 3°  nd; and
mldi) @ - - @ meldy] = mi[di] @ - - - © m[dy).

Then k =1 and there exists a permutation o € Sy such that for every 1 <1 < k we have
(n;, 7T7€7 d;) = (no(i), To (i) dcr(z)) .

We call the triple (k, (n;, d;)1<i<k), up to permutations of the (n;, d;), the endoscopic type
of (m,r). The parameter is called stable if k = 1 and endoscopic otherwise. It is called
tempered if d; = 1 for all ¢ and non-tempered otherwise.

In Conjecture 5.5.2, cuspidal representations of PGL,,,n > 1 are building blocks of Lang-
lands parameters ¢ (7, 7). Furthermore, the following result shows that under some condi-
tions, for example when G(R) is compact, we only need algebraic cuspidal representations:

Proposition 5.5.4. [ , Proposition 8.2.8] Let G be a semisimple Q-group admitting a
reductive Z-model, m € Ilgiso(G) andr : G — SL,, ¢ an n-dimensional algebraic representation
of G. Suppose that

(i) Coo(T) € Ggs is the infinitesimal character of a finite-dimensional irreducible complex
representation of Gc,
(i) and Y(w,r) = ¥ m;[d;] with 7; € Moy (PGL,,,), i =1,..., k.

Then m; is algebraic for i =1,..., k. Moreover, the class of w(m;) + d; — 1 in Z/27 depends
only on r and not on the integer i or even on 7.

5.6 Arthur’s multiplicity formula

Arthur gives a conjectural formula for the multiplicity of an adelic representation 7 €
II(G) in the discrete spectrum Lgisc(G). In this section, we will state this for a simply-
connected anisotropic Q-group G' admitting a reductive Z-model, following | , §8.

For a representation 7 € II(G), there are finitely many discrete global Arthur parameters
¥ of G such that ¢(7) = c¢(¢)). According to | ], the multiplicity m(7) of 7 in Lgise(G)
should be the sum of m, over the set of all such 1, where m,, is some integer that we are
going to introduce. We note that these 1 all belong to the following subset of Vg (G):

Definition 5.6.1. We define W5;(G) to be the subset of Wy (G) consisting of ) € Wi (G)
satisfying that c..(¢)) is the infinitesimal character of a finite dimensional irreducible repre-
sentation of Gc.

Remark 5.6.2. The subscript AJ stands for Adams-Johnson. This means the archimedean
Arthur parameter Wg X SLy(C) — G(C) for ¢ € Vaio(G) is an Adams-Johnson parameter
in the sense of [ , §8.4.14] if and only if ¢ € W,;(G). The condition that ¢y (7)) is
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the infinitesimal character of a finite-dimensional irreducible representation is the condition
(AJ1) in [ , §8.4.14], and the second condition (AJ2) for Adams-Johnson parameters is
automatically satisfied in our case by | , §4.2.2; , Proposition 6].

Now we let ¢ € Wa;(G). In Definition 5.3.2, the global component group C, of ¢ is
defined to be the centralizer of Im(¢) in G(C). When G is semisimple, this group is finite
since the center of G is finite. Moreover, as explained in | , §8.4.14], C, is an elementary

finite abelian 2-group, i.e. a product of finitely many copies of Z/27Z. For any i € Wx;(G),
Arthur’s formula for m,, involves two quadratic characters of Cy.

5.6.1 The character p

The first character of Cy, is defined as follows.

By Proposition 5.2.1, the conjugacy class co (1) for ¥ € Wa;(G) is regular, viewed as
a cocharacter of a maximal torus T' of G chosen as in [ , §8.4.14]. Hence there is a
unique Borel subgroup B> T of G with respect to whom the infinitesimal character co,(1))
is strictly dominant. Let p,; be the half-sum of positive roots with respect to (@ B, T\) Since
(G is simply-connected, pi € %X *(f ) is a character of T. Its restriction to the component
group Cy, is the first character we need, and we denote p"|c, by p,; for short.

5.6.2 Arthur’s character ¢,

A discrete global Arthur parameter 1) € W5;(G) induces a morphism
Cy x Lz x SLy(C) — G(C).

Restricting the adjoint representation g of G (C) along this morphism, it can be decomposed
into a direct sum

!
§|C¢><LZ><SL2((C) = @Xi ® mi[di], (5.5)
i=1

where x; is a quadratic character of C,, and 7; is an n;-dimensional irreducible representation
of £ which is identified as an element in ITIZ _ (PGL,,). Moreover, since ¢ belongs to ¥ »;(G),

cusp
according to Proposition 5.5.4 these cuspidal representations 7; are algebraic.

Definition 5.6.3. | , Equation 8.4] Let ¢ € W ;(G), and I be the subset of {1,...,{}
consisting of i satisfying that in (5.5) the cuspidal representation ; is self-dual and e(m;) =
—1. Arthur’s character e, : Cyy — po is defined by

ep(s) = Hxi(s), for every s € Cy.
i€l

The following result shows that it is sufficient to calculate the global epsilon factors e(;)
for 7 in a subset of {1,...,1}:
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Proposition 5.6.4. Let ) € Vu;(G). For any s € Cy, let I, be the subset of {1,...,1}
consisting of i satisfying that in (5.5) the representation m; is self-dual, d; is even, and
Xi(s) = —1. Then we have:

Proof. When d; is odd, the d;-dimensional irreducible representation of SLy(C) is orthogonal.
Since the adjoint representation is an orthogonal representation, the self-dual representation
m; of Lz must be also orthogonal, which implies (m;) = 1 by Theorem 5.4.8. Hence the
subset I in Definition 5.6.3 is a subset of {i|d; is even}, and for any s € C,, we have

ep(s) = H Xi(s) = H e(m;) = HE(Wz’)-

2|d;, mi=my , e(mi)=—1 2|d;, mi=my, xi(s)=—1 iels

5.6.3 The multiplicity formula

With two characters qu and ¢, in hand, we can state Arthur’s following conjecture:

Conjecture 5.6.5. (Arthur’s multiplicity formula) Let G' be a simply-connected anisotropic
Q-group with a reductive Z-model, and 7 a level one adelic representation in II(G). We have
the following formula for the multiplicity m(w) of m in the discrete spectrum Lgisc(G):

; Vo __
m(7) = Z My, where my, = {1’ i = v, (5.6)

0, otherwise.
PEWgisc(G), c(ih)=c()

6 Classification of global Arthur parameters for F,

In this section, we are going to apply Arthur’s conjectures recalled in §5.5 and §5.6 to
the simply-connected anisotropic Q-group F4 defined in Definition 2.1.6. The dual group ﬁ
is isomorphic to the extension F4 ¢ of F4 to C. In other words, the complex Lie group f‘;(@)
is isomorphic to the complexification Fy ¢ of the real compact Lie group Fy.

6.1 Arthur parameters of Fy

The real points Fy = Fy(R) is compact, so an adelic representation 7w € II(Fy) is deter-
mined uniquely by ¢(7). On the other hand, by Proposition 4.1.5 and Axiom 1, a discrete

global Arthur parameter ¢ of Fy is also determined uniquely by c(¢)) € X(f‘z) Moreover,
we have the following criterion, which is a direct corollary of Proposition 4.2.1:

Proposition 6.1.1. Let ¥, and ¥y be two discrete global Arthur parameters of Fy, and
ro : Fy — SLogc the 26-dimensional irreducible representation of F4(C). Then 1y = 1y if
and only if ro(c(v1)) = ro(c(1hy)).
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By this result, we will identify a discrete global Arthur parameter ¢ € W g;s.(F4) with the
corresponding family of conjugacy classes ro(c(v))) € X(SLag).

For a level one discrete automorphic representation @ € Ilgs(Fy), the discrete global
Arthur parameter 1) € Wa3(F,) such that c¢(¢)) = ¢(m) predicted by Axiom 1 is unique. We
denote this parameter by ., which is identified with ¢ (m 1) € X(SLgg). Conversely, for
1 € Ua5(F4), we denote the unique representation = € II(7) such that c¢(7) = c(¢)) by my.

The following lemma gives us some constraint on the infinitesimal character c..(1) of

Qﬂ € \I’AJ(F4)2

Lemma 6.1.2. Let ¢y € (f4)ss be the infinitesimal character of an irreducible representation
of the compact group Fy4, then there exists four non-negative integers a, b, c,d such that the
eigenvalues (counted with multiplicity) of ro(coo) € (Slag)ss are:

0,0,£(a+1),£0b+1),£(a+b+2),£(b+c+2),x(a+b+c+3),£(b+c+d+3),
ta+b+c+d+4),H(a+20+c+4),£(a+2b+c+d+5),£(a+2b+2c+d+6),
ta+3b+2c+d+7),£(2a+ 30+ 2c+ d +8).

Proof. If we write the highest weight A of this irreducible representation of Fy as aw; +bwsy+
cws + dwy, then by Proposition 5.2.1 the infinitesimal character ¢y is A+ p = (a + 1)y +
(b+ 1)ws + (¢ + 1)ws + (d + 1)wy. The eigenvalues of ro(cy) are of the form (A + p, V),
where ¥ runs over the 26 weights of ﬁ(@) appearing in the representation ro. By an easy
calculation, we get the eigenvalues in the lemma. O

As recalled in §5.3.1, we associate to ¢ € W (Fy) a morphism . : £z x SU(2) — Fy
between compact Lie groups. This homomorphism inherits the following properties from :

o the image Im(v).) is connected due to Proposition 5.3.5,

« the centralizer of Im(¢.) in Fy coincides with the global component group C, of v,
which is an elementary finite abelian 2-group by | , §8.4.14],

o and the zero weight appears exactly twice in the restriction of the 26-dimensional
irreducible representation Jy of F, along 1. by Lemma 6.1.2.

Hence Im(2).) is a subgroup of Fy satisfying the three conditions in the beginning of §4, thus
the class H(¢) defined in Definition 5.3.6 is the conjugacy class of one of the subgroups of
F, listed in Theorem 4.6.7.

According to Conjecture 5.5.2, the discrete global Arthur parameter v, = ¥ (m, 1ry) cor-
responding to a discrete automorphic representation m € Ilgs.(F4) should be of the form:

Ty [di] @ - - - @ x|y,

where m; € Il (PGL,,) and Zle n;d; = 26. By Proposition 5.5.4, every m; is algebraic,
and it is also self-dual by the following lemma:

Lemma*6.1.3. Let w € Hgis(Fa) and v, = mi[di|®- - - 7i[dy] be its corresponding discrete
global Arthur parameter, then for each i =1,...,k, the representation m; € Heusp(PGLy,,) is
self-dual.
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Proof. By our classification result in §4.6, identifying m; € Il.us,(PGL,,) as an irreducible
representation of £z, it must be of the form £z — H - SL, (C), where H is a connected

compact subgroup of Fy and r is a self-dual irreducible representation of H, thus m; itself is
self-dual. O

So a discrete global Arthur parameter ¢ € W;5(Fy4) corresponding to some 7 € Ilgisc(Fy)
must be of the form

¥ =m[d] ® - @ m[dy], where m; € I3, (PGL,, and = 26. (6.1)

The endoscopic types (k, (n;, d;)1<i<k) can be classified by our results in §4.6.
Ezample 6.1.4. If the class H(1) associated to ¢ € Wa5(Fy) is the conjugacy class of

= (AP AP s,

by §4.6.10 the restriction of the 26-dimensional irreducible representation (rg, Jo) along 1 is
isomorphic to
Sym® St ® St + Sym® St ® 1 + Sym* St ® 1.

Depending on how £7 and SU(2) are mapped to this subgroup H C Fy, we have the following
three possible endoscopic types for :

« (3,(2,6),(1,5),(1,9), v = x[6] @ [5] ® [9], 7 € Halg(PGLg)
« (3,(9,1),(5,1),(6,2)), ¥ = Sym® m & Sym" = & Sym” (2], w € I35, (PGLy);
e (3,(9,1),(5,1),(12,1)), ¢ = Sym® m; @ Sym* m, @ (Sym® 7, @ 7m3), 71, T2 € Halg(PGLg).

6.2 The multiplicity formula for F,

For a discrete global Arthur parameter ¢ € Wa;(Fy), Arthur’s multiplicity formula Con-
jecture 5.6.5 predicts that the multiplicity m(my) of 7wy in Laisc(F4) equals to my,, the formula
for which is given in (5.6). To calculate my, it suffices to know two characters of Cy: Arthur’s
character €y, and plvp We have given the formula of ¢, in Proposition 5.6.4, and in this sub-
section we will give a recipe for the character p for our Q- group Fy.

We fix a maximal ideal 7' of F4 and a Borel subgroup B> T asin §5.6.1 such that
the infinitesimal character ¢y (1), as a cocharacter of T is strictly dominant with respect to
(1/:‘1, E, f) We denote the four simple roots of the root system with respect to (f‘z, E, T\) by
af,i=1,2,341.

By Lemma 6.1.2, we can order the eigenvalues (counted with multiplicity) of c.(¢) as
M > o > g > [y > [y > -+ - > lgg. The partial order relation of the positive weights of rg
in Table 1 implies that

1 = (coo(®), 20y + 30y + 205 + ), pa = (Coo(¥), ) + 2003 + v + o).

R 0Here we still follow Bourbaki’s notation, but since we are considering the root system of the dual group
G, the simple root oy, 1 <4 < 4 corresponds to as_; in Bourbaki.
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Notice that
(20 + 3 + 20 + ) + (af + 209 +ay +a)) =af +ay +ay = 101\[/) mod 2X*(f),

thus the character py, of Cy C T[2] is the product of (20 + 30y + 20y + ay)|c, and
() +2ay + ay +ay)|c,. Hence it suffices to determine these two characters.
If p = mldi] © - @ mp[dy] as in (6.1), the eigenvalues of 1o(coo (1)) € (sla6)ss are of the

form w + £, where w is a weight of m; and j € {d; —1,d; =3, ..., —d; +3, —d; +1}. For each
1=1,...,k, we define a multiset
Wi = {w + % ‘ w € Welghts(m) and j = dz - 1,d1 - 3, NN —(dl - 3), —<d2 - 1)} .

Proposition 6.2.1. There exists a unique index i (resp. j) in {1,...,k} such that uy € W;
(resp. pa € W, ). If we denote respectively by €; and €; the characters of Cy induced by the
Cy-actions on m;[d;] and m;]d;], then pyj, = €; - €;.

Proof. The uniqueness of ¢ and j follows from the fact that p; and py are different from
other eigenvalues of ro(coo(¢))).
For any s € C,, we have

p(s) = (20 + 3oy + 20 + o) (s) - () + 205 + o + ay)(s).

Since pu; € W;, the value (207 + 3oy + 2ay + «)(s) is the scalar given by the action of
s on the irreducible summand m;[d;], which equals ¢;(s) by definition. Similarly, we have
(af +2ay + a3 + ay)(s) = ¢;(s) and the identity p; = €; - ¢;. O

6.3 Classification of Arthur parameters

Now we can do (conjectural) classification of global Arthur parameters for Fy:

Theorem™ 6.3.1. Admitting the existence of the Langlands group Lz defined in §5.3 and
Arthur’s multiplicity formula Conjecture 5.6.5, a (level one) discrete global Arthur parameter
€ Way(Fy) satisfies m(my) = 1 if and only if it belongs to the parameters described in the
following propositions (from Proposition 6.3.4 to Proposition 6.3.18).

In this subsection, we will prove Theorem 6.3.1 case by case, depending on the conjugacy
class H(1)) associated to the discrete global Arthur parameter . For each subgroup H of
Fy = F4(R) listed in §4.6, we classify all the endoscopic types of ¢ € W, ;(F,) such that H(1))
is the conjugacy class of H like what we have done in Example 6.1.4, then apply Arthur’s
multiplicity formula Conjecture 5.6.5, Proposition 5.6.4 and Proposition 6.2.1 to 1) and get
those with m(my) = 1.

Notation 6.3.2. From now on, when H(¢)) is the F-conjugacy class of H, we say H(v)) = H
by an abuse of notation.

Remark 6.3.3. Since the proof of Theorem 6.3.1 is long, readers can read first the proof of
Proposition 6.4.3 in §6.4 to see how Arthur’s conjectures are used.
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6.3.1 H=Al"

The restriction of the 26-dimensional irreducible representation Jy to H is isomorphic to
Sym'® St + Sym® St.

For ¢ € Wa;5(F,) satisfying H(¢) = H and m(m,) = 1, there are two possible endoscopic
types:
(i) (2,(1,17),(1,9)), which corresponds to the parameter [17] @ [9] of the trivial represen-
tation of Fy(A).
(i) (2,(17,1),(9,1)). The discrete global Arthur parameters 1 with this type are con-

structed as follows: for a representation m € Hig(PGLZ) and a positive integer k,
L

we denote by Sym” 7 the representation in I, reg (PGLg11) corresponding to the irre-

ducible representation given by
L7 43 SLy(C) — SL(Sym* St) ~ SLj,1(C).
A global Arthur parameter of this type is of the form:

Sym'® 7 @ Sym®n«, m € Hjlg(PGLg).

Proposition*6.3.4. For a discrete global Arthur parameter ) € Wa;(Fy) satisfying H(y)) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o [17] @ [9], which corresponds to the trivial representation of F4(A).

« Sym'®r @ Sym®r, 7 € I, (PGLy).

Proof. This is because C,; is trivial. O

6.3.2 H= <A§9’62’5l X A[1267114]> S

By §4.6.10 the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to
Sym® St ® St + (Sym® St 4 Sym* St) ® 1,

and the centralizer of H in Fy is Z(H) ~ Z/27.
For i) € Wa;(Fy) satistying H(+)) = H and m(m,) = 1, there are three possible endoscopic

types:
(i) (3,(2,6),(1,5),(1,9)). A global Arthur parameter of this type is of the form:

7[6] @ [5] @ [9], w € 11, (PGLs).
(i) (3,(9,1),(5,1),(6,2)). A global Arthur parameter of this type is of the form:

Sym® 7 & Sym® 7 & Sym® x[2], 7 € II,;,(PGLy).
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(iti) (3,(12,1),(9,1),(5,1)). For two representations 7,7y € II;j,(PGLy), we can construct
the following 12-dimensional irreducible representation of Lz:

(%1 Wry)

Ly SL,(C) x SLo(C) ™5 SL,(C),

which induces a cuspidal representation of PGL;5, denoted by Sym5 T ® me. A global
Arthur parameter of this type is of the form:

Sym® 1 @ Sym* 1 & (Sym5 T ® 7r2) T, T € Halg(PGLQ).
Remark 6.3.5. In fact, for a (3,(12,1),(9,1), (5,1))-type parameter
Y = Sym® 1 @ Sym* m @ (Sym5 T & 7T2) T, Ty € Halg(PGLz),

there are some conditions on the motivic weights w(m;), w(m2) to make 1) a parameter in
Uas(F4). We will add these conditions for global Arthur parameters ¢ with m,, = 1 when
necessary. For example, when w(me) > 9w(m;) the condition for ¢ € U(Fy) is that w(my) >
9w(m) + 2, which is satisfied automatically since w(my) and 9w(m ) are two distinct odd
numbers.

For this subgroup H of Fy, the restriction of the adjoint representation f4 of Fy to H is
isomorphic to

1 ® Sym* St + (Sym” St + Sym® St) @ St + (Sym'? St + Sym® St + Sym* St) ® 1.

Proposition* 6.3.6. For a discrete global Arthur parameter ) € Va5(Fy) satisfying H(v) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o 7[6] ® [5] @ [9], where w € T3, (PGLy).

o Sym® 7 @ Sym* 7 ® Sym® 7[2], where T € Halg(PGLg) satisfies w(m) = 3mod 4.

. Sym8 T D Sym4 T D (Sym T ® 7T2) where w, Ty € Halg(PGLg) have motivic weights
wy, we respectively such that wy > 9wy or Hwy < we < Twy.

Proof. We denote the generator of Cy, = Z(H) by 7.
Case (i): v = 7[6] @ [5] @ [9], where 7 € II,;,(PGLy) has motivic weight w. In this case
the restriction of §, along ¢ is isomorphic to

Sym? 7 @ 7[10] @ 7[4] @ [11] @ [7] @ [3].
By Proposition 5.6.4, we have:

es() = e(r) - e(r) = e(L,)? = 1.

On the other side, since w > 11 we have p; = “’+5 and py = 2_1. Both of them come from
the irreducible summand [6] in 1, so p,, must be the trivial character by Proposition 6.2.1.
By Arthur’s multiplicity formula, m(m,) = 1 for any 7 € II;;,(PGLy).

Case (ii): ¢ = Sym® 7 @ Sym* 7 @ Sym® 7[2], where 7 € IT;, (PGLy) has motivic weight

w. In this case the restriction of f4 along 1 is isomorphic to

Sym™ 7 @ Sym® 7[2] © Sym® 7 @ Sym® 7[2] & Sym? 7 @ [3].
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By Proposition 5.6.4, we have:

ey(y) = e(Sym® 7r) - e(Sym? )
= <I3w +1 ) : (I9w + I7w + I5w + I3w + Iw)
_ ( ) (w+1)/2+(Bw+1)/2 | (_1)(w+1)/2+(3w+1)/2+(5w+1)/2+(7w+1)/2+(9w+1)/2

( 1) w+3)/2

On the other side, p; = 4w comes from Sym®7 and py = % comes from Sym®7[2]. So
py.(7) = —1 by Proposition 6.2.1. By Arthur’s multiplicity formula, m(7,) = 1 if and only
if w = 3mod4.

Case (iii): 1 = Sym® 7, ® Sym* m; @ (Sym5 ™ ® 7r2) where 7, Ty € Halg(PGLg) have
motivic weight wy, wy respectively. Since this parameter is tempered, the character €, is
always trivial. We only need to find what condition w;, w, should satisfy to make py,(y) = 1.
In this case, v acts on Sym®m; and Sym*7; by 1 and on Sym® 7, ® 7, by —1. We can see

that pu; = 4w, or 5“’1%, depending on the values of wq, ws.

(1) If gy = 4wy, which is equivalent to ws < 3w;. Now p:Z(W) = 1 if and only if py = 3w,
since the other positive weights w1, 2w, in Sym® m; ® Sym® m; both have multiplicity 2.
However, 3w; is larger than all the Hodge weights of ¢ except 4w, and 5“’1%, which
shows that it can only be pg or pz. So in this case py(y) = —1.

(2) If py = 2592 which is equivalent to wy > 3w;. Now py(y) = 1 if and only if

witws o ZwWitwy

Ha = = 5
(a) pa = "2 is equivalent to 4wy > 32 > 3wy, thus 5wy < wy < Twy.

(b) pg = =H5E2 is equivalent to =552 > 4wy, thus wy > Jwy.
By Arthur’s multiplicity formula m(7,) = 1 if and only if wy > 9w; or bw; < wy < Tw;. O
6.3.3 H = (AP Al g

By §4.6.11 the restriction of the 26-dimensional irreducible representation Jq of Fy to H
is isomorphic to

Sym* St ® 1+ (Sym® St + St) ® St 4+ Sym? St ® Sym? St,

and the centralizer of H in Fy is Z(H) ~ Z/27.
For i) € Wa;(Fy) satisfying H(¢)) = H and m(m,) = 1, there are three possible endoscopic

types:
(i) (4,(3,3),(2,4),(2,2),(1,5)). A global Arthur parameter of this type is of the form:

Sym® m[3] & 4] & 7[2] & [5], 7w € 1,1, (PGLy).
(ii) (4,(5,1),(4,2),(3,3),(2,2)). A global Arthur parameter of this type is of the form:

Sym* m & Sym® 7[2] & Sym?® 7[3] & 7[2], w € II,;,(PGLs).
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(iii) (4,(9,1),(8,1),(5,1),(4,1)). A global Arthur parameter of this type is of the form:

Sym* m @ (Sym® 11 ® 7o) @ (Sym? 1, ® Sym?® 7my) @ (711 ® ma), T, Mo € Haﬁg(PGLQ),

where the representations Sym® 71 ® Sym' 7, are defined similarly as the representation
Sym® 7, ® my appearing in [(12,1),(9,1), (5, 1)]-type parameters introduced in §6.3.2.

For this subgroup H of Fy, the restriction of the adjoint representation f4 of Fy to H is
isomorphic to

St ® Sym?® St + (Sym4 St + 1) ® Sym? St + (Sym5 St + Sym® St) ® St + (Sym2 St) 2 ®1.

Proposition*6.3.7. For a discrete global Arthur parameter ) € Wa;(Fy) satisfying H(y) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o Sym®7[3] @ 7[4] ® 7[2] @ [5], where 7 € 11}, (PGLy).

alg

« Sym* 7 @ Sym® 7[2] @ Sym?® 7[3] © 7[2], where 7 € 1T, (PGLy).

o Sym*m @ (Sym® 1 ®7,) @ (Sym? 1, ® Sym? my) @ (7, @ ma), where Ty, Ty € Hjlg (PGLy)
have motivic weights wy, wy respectively such that

wy > 3wy or wy < we < 3wy or 3wy < wy < bw;.

Proof. We denote the generator of Cy, = Z(H) by 7.
Case (i): ¢ = Sym*x[3] @ 7[4] & n[2] & [5], where 7w € I}, (PGL;) has motivic weight
w. In this case the restriction of f; along v is isomorphic to

Sym? 7[2] ® Sym? 7[5] ® Sym? 7 & 7[6] © 7[4] @ [3] @ [3].
By Proposition 5.6.4, we have:
(1) = =(Sym® 1) - () - () = (T + L) - £(L,)? = (—1)H = 1.

On the other side, y; = w + 1 comes from Sym® 7[3] and ps = “&2 comes from 7[4]. Since
7 acts on Sym?7[3] by 1 and on 7[4] by —1, we have py.(7) = 1 by Proposition 6.2.1. By
Arthur’s multiplicity formula, m(my) = 1 for any 7 € II;;, (PGLy).

Case (ii): 1 = Sym* 7@ Sym® 7[2] ©Sym? 7[3] ®7[2], where 7 € IT;, (PGLy) has motivic
weight w. In this case the restriction of §, along ¢ is isomorphic to

Sym® 7[2] @ Sym* 7[3] ® Sym® 7[2] @ (Sym? 7)®* @ 7 [4] @ [3].
By Proposition 5.6.4, we have:
() = ¢e(m) - 5(Sym3 ) - 5(Sym5 m) = &(Lw)e(Tsw + Lw)e(Tsw + Isw + L) = (_1)3w+1 =L

On the other side, 1, = 2w comes from Sym* 7 and jy = w + 1 comes from Sym? 7[3]. Since
7 acts on Sym* m and Sym? 7[3] both by 1, we have py.(7) = 1 by Proposition 6.2.1. Arthur’s
multiplicity formula shows that m(m,) = 1 for any 7 € II;, (PGLy).

Case (iii): ¥ = Sym*m @ (Sym®m @ m) @ (Sym? 7, ® Sym? my) @ (m, ® 73), where
M, Ty € Haﬁg(PGLg) have motivic weights wy, wy respectively. The motivic weights satisfy
we # wy,wy # 3wy, otherwise the zero weight appears more than twice and 1 fails to be in
Uaj(F4). In this case g is trivial. The element ~ acts on Sym4 7y and Sym2 T ® Sym2 o

by 1, and on Sym® 7, ® 7, 1 ® 7, by —1. The largest weight p; is 2wy or wy + ws.
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3w —w2
2

(1) If wy > wy, then py = 2w;. Now py equals to or wy + wse. The character pl\z is
trivial if and only if py = wy + we, which is equivalent to w; > 3ws.
(2) If wy < wy, then py = wy + ws.

(a) If wy > 3wy, then

371)1 + wo

2

311)1 + w2>
2

3wy w2
S22 So

wy + we > we > max(—w; + wy, ) > min(—w; + ws,

and they are larger than other weights, thus puy = —w; + wy or
pi(v) = 1if and only if jy = —w; + wo, thus if and only if Switwz > wy — wy,
which is equivalent to that 3w, < ws < bwy.

(b) If wy < 3wy, then

3
wy + wy > w > max (2w, we) > min (2w, wy)

and they are larger than other weights. So we always have py(v) = 1.
By Arthur’s multiplicity formula, m(m,) = 1 if and only if w; > 3w, or wy < we < 5wy and

wWao 7é 311)1. L]
6.3.4 H = (A[P 2 a9 s

By §4.6.12, the restriction of the 26-dimensional irreducible representation Jy of Fy to H
is isomorphic to

1 + Sym?® St ® St + Sym? St ® Sym? St + St ® Sym? St,

and the centralizer of H in Fy is Z(H) ~ Z/27.
For ¢ € W,;(F,) satisfying H(¢)) = H and m(my) = 1, there are two possible endoscopic

types:
(i) (4,(4,2),(3,3),(2,4),(1,1)). A global Arthur parameter of this type is of the form:

Sym?® 71[2] ® Sym?® 7[3] ® 7[4] @ [1], 7 € I, (PGLy).

alg

(i) (4,(9,1),(8,1),(8,1),(1,1)). A global Arthur parameter of this type is of the form:
(Sym® 7 ® m2) @ (Sym® m ® Sym® m3) @ (m ® Sym®72) @ [1], w1, 72 € I, (PGLy).

For this subgroup H of F,, the restriction of the adjoint representation f, of F4 to H is
isomorphic to

(Sym4 St + 1) ® Sym? St + Sym?* St ® (Sym4 St + 1) + Sym?® St ® St + St ® Sym? St.

Proposition* 6.3.8. A discrete global Arthur parameter ¢ € Va3(Fy4) satisfying H(y) = H
and m(my) = 1 must be of one of the following parameters:

o Sym®r[2] ® Sym® 7[3] ® n[4] @ [1], where m € 11, (PGLy) satisfies w(m) = 3mod 4.

alg

73



o (Sym®m ®7) @ (Sym® 7 ® Sym?® ) @ (71 ® Sym® 7o) @ [1], where 71, T have motivic
weights wy, wy respectively such that we < wy < 3ws.

Proof. We denote the generator of Cy, = Z(H) by o.
Case (i): 1 = Sym®7[2] @ Sym? 7[3] @ 7[4] @ [1], where 7 € I1;,(PGLy) has motivic
weight w. In this case the restriction of f; along v is isomorphic to

Sym* 73] @ Sym® 7[2] ® Sym?* 7[5] & Sym® 7 ® 7[4] @ [3].
By Proposition 5.6.4, we have:
ep(0) = e(Sym® m) - (1) = eIy, + L) - e(I,) = (=1)F V2,

On the other side, p; = 225 comes from Sym® 7[2] and py = w comes from Sym?* 7[3]. Since
o acts on Sym® 7r[2] by —1 and on Sym?7[3] by 1, we have p(c) = —1 by Proposition 6.2.1.
By Arthur’s multiplicity formula, m(m,) = 1 if and only if w = 3mod 4.

Case (ii): v = (Sym®’m ® m) @ (Sym® 1, ® Sym?my) @ (71 ® Sym® 7o) @ [1], where
T, Ty € Halg(PGLz) have motivic weights w; > ws respectively. In this case, €, is trivial.

On the other side, p; = %12 and py = wy or Y32 o 3wi—w2,

w1 +3w2 3w —wa
3 or 3 .

(1) py = %3“’2 if and only if 3“’12_ w2 > ler23w2 > wy, which is equivalent to 2w, < wy <
3'(1)2.

(2) py = 3“’12—_“’2 if and only if wlf’“’? > 3““2_ “2 which is equivalent to w; < 2ws.

By Proposition 6.2.1, pw

is trivial if and only if pq =

By Arthur’s multiplicity formula, m(m,) = 1 if and only if wy < wy < 3wy and w; # 2ws.
Notice that w; # 2wy holds automatically since w; is odd. O

6.3.5 H = A"« A

By §4.6.7, the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to
Sym® St ® Sym? St + 1 ® Sym* St,

and the centralizer of H in Fy is trivial.
For i) € Wa;(Fy) satisfying H(¢)) = H and m(m,) = 1, there are three possible endoscopic

types:
(i) (2,(7,3),(1,5)). A global Arthur parameter of this type is of the form:

Sym® 7[3] @ [5], m € II,,(PGLy).
(i) (2,(5,1),(3,7)). A global Arthur parameter of this type is of the form:
Sym* 7 @ Sym® 7[7], 7 € I;,(PGLy).
(iii) (2,(21,1),(5,1)). A global Arthur parameter of this type is of the form:

(Sym 7 ® Sym? 7r2) @ Sym* 1y, w1, 7o € Halg(PGLQ).
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Proposition* 6.3.9. A discrete global Arthur parameter ¢ € Va3(Fy4) satisfying H(y) = H
and m(my) = 1 must be of one of the following parameters:

o Sym®w[3] @ [5], where 7 € 11}, (PGLy).

alg

o Sym* 7 @ Sym? (7], where 7 € 115, (PGLy).

€L

alg(PGLQ) have motivic weights wy, wo

. (Sym6 T ® Sym2 7T2) @Sym4 o, where mp, my € 11
respectively such that wo # wy and wy # 3wy.

Proof. This follows from the fact that Cy, is trivial. The conditions wy # w; and wy # 3w,
in the third case are equivalent to that ¢ = (Sym6 T ® Sym? 7T2) @ Sym4 Ty € Upy(Fy). O

6.3.6 H =AM (A[133’26’15] x A[f6’114]> /s

By §4.6.8, the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to

Sym*St ® 1 ® 1+ Sym* St @ (St ® St + Sym*St ® 1) ,

and the centralizer of H in Fy is Z(H) ~ Z/27.
For ¢ € Wy ;(F,) satisfying H(¢)) = H and m(my) = 1, there are four possible endoscopic

types:
(i) (3,(6,2),(5,1),(3,3)). A global Arthur parameter of this type is of the form:

Sym* 7, @ (Sym? m; ® m[2]) © Sym? m1[3], 71, T € Hjlg(PGLg).

(i) (3,(9,1),(6,2),(5,1)). A global Arthur parameter of this type is of the form:
Sym* m, @ (Sym? m; ® m3[2]) @ (Sym? m; ® Sym? my), m, Mo € Hjlg(PGLz).
(iii) (3,(4,3),(3,3),(1,5)). A global Arthur parameter of this type is of the form:

Sym? 7, [3] @ (71 ® m3[3]) @ [5], 71, ™ € I, (PGLy).

alg

(iv) (3,(12,1),(9,1),(5,1)). A global Arthur parameter of this type is of the form:

Sym* 7, @ (Sym? 1, ® m @ m3) @ (Sym? 1, ® Sym? m3), 7y, 7o, T3 € Hjlg(PGLg).

For this subgroup H of Fy, the restriction of the adjoint representation f4 of Fy to H is
isomorphic to

Sym* St ® (St ® St + Sym® St ® 1) + Sym’St @ 1 ® 1
+1® (Sym*St ® 1 + 1 ® Sym? St + Sym® St @ St) .
Proposition*6.3.10. For a discrete global Arthur parameter € Wa5(Fy) satisfying H(y)) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o Sym* 71 @ (Sym?m ® m[2]) © Sym? 1 [3], where w1, Ty € 11, (PGLy) have motivic

weights wy, wy respectively such that wy < 2wy — 1 or wo > 4wy + 1.
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o Sym* 71 @ (Sym?m ® m[2]) @ (Sym?m ® Sym? my), where w1, Ty € 115, (PGLy) have

motivic weights wy, wo respectively and satisfy one of the following conditions:
— 2w + 1 <wy < 4wy —1, wy = 1mod4,
— wy < 2wy — 1 or wg > 4wy + 1, and wy = 3mod 4, wy # ws.

o Sym®m[3] & (m @ ma[3]) & [5], where m,my € 1LY, (PGLy) have motivic weights wy, ws
respectively such that we > 3wy .

o Sym*m @ (Sym?m ® 7 ® m3) @ (Sym? 71, ® Sym?® m3), where 7y, 7y, T3 € Hjlg(PGLz)

have motivic weights wy, wy, w3 respectively such that one of the following conditions
holds:

— wy > max(3ws, 4wy + ws);

— 2wy + w3 < wy < 4wy — ws;

— 3w < wy < 2wy — ws;

— 2wy + w3 < wy < min(4w; + ws, 3ws);

— 4w — ws3| < wy < w3 — 2wy;

— 2w — ws3| < wy < min(4dw; — ws, 3ws) and ws # wy, ws # ws.

Proof. We denote the generator of Cy, by v = (1,—1,1) € Z(H).
Case (i): ¢ = Sym* 7, @ Sym? m; ® m3[2] @ Sym? m,[3], where 71, 75 € 115 (PGL;) have

alg
motivic weights wy, wsy respectively. In this case the restriction of §, along 1) is isomorphic

to
(Sym®* 7 @ m2[2]) @ Sym® m[3] @ Sym® m; @ Sym”® my @ mo[4] & [3].
By Proposition 5.6.4 we have e, () = e(Sym" m; ® m3) - £(m2). Notice that
eIy @ Ly) = e(Luypur + Lypoyy)) = 4T FIomw 92 — (pymax(w )il
thus
0(2) = & (Taos + Ty + Ty + L) 8 T = (s sz

Hence ey4(y) = 1 if and only if wy < 2w; or wy > 4w;. On the other side, 1 = 2w; or
w; + 22t The generator vy of Cy, acts on Sym* 71 and Sym® m1[3] by 1 and on Sym? 7y @ mo[2]
by —1. We also notice that i) € W ;(F,) implies that wy ¢ {2w; £+ 1, 4w, £ 1}.

(1) If wy < 2wy — 1, then p; = 2w;. Now we have 2w, >w1+w27+1 >w1+w2771 > wp + 1
and they are larger than other Hodge weights, thus 4y = wy + 1. Hence pq\g(fy) =1

(2) If wg > 2wy + 1, then py = wy + w22+1. Now

U)g—f-]_ w2—1

1 -1
W2 i ) > min(2wy,

> wy +
2 w

wy + > max (2w, ) > wy + 1

and they are larger than other weights. So py = 2w, or wQT“, U’QT_l However, if
2

[ty = 2wy, then we must have “’QTfl < 2w; < 2t which is absurd because there is no
wat1

integer between WZT’l and wQTH Hence py = *%= and py(v) = 1.
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In conclusion, py(y) = 1 for any 7, 7. By Arthur’s multiplicity formula, m(m,) = 1 if and
only if wy < 2wy — 1 or wy > 4wy + 1.

Case (ii): ¢ = Sym'm @ (Sym® 7, ® m[2]) @ (Sym®m ® Sym?my), where 7, €
Hzﬁg(PGLg) have motivic weights wy, ws respectively. In this case the restriction of f; along
1 is isomorphic to

(Sym* m; ® Sym® ;) & (Sym® m @ m2[2]) @ Sym® m2[2] @ Sym® 1, & Sym”® mp @ [3).
By Proposition 5.6.4 we have:
6¢(’}/) _ €(Sy1114 e 7T2) . 5(Sym3 7T2) _ (_1)max(4w1,wg)+max(2w1,w2)+(w2—1)/2.

On the other side,  acts on Sym® 7, Sym? 7; ® Sym? 75 by 1 and on Sym? 7, ® m5[2] by —1.

wo—1

(1) If wy > wo,then py = 2w;. Now py must be wy 4 “2—=

(2) If wy < wy, then pu; = wy + wy. Now ,01\2(7) = 1 if and only if ps comes from Sym* 1
or Sym?m ® Sym?7,. We can easily verify that none of the weights of these two
irreducible summands is possible to be fu4.

and we have py(v) = —1.

In conclusion, p;(y) = —1. By Arthur’s multiplicity formula, for 1) € Wa;(F4) the multi-
plicity m(my) = 1 if and only if one of the following conditions holds:

o 2w+ 1 <wy < 4wy — 1, wy = 1mod4;
o wy < 2wy — 1 or ws > 4w + 1, and we = 3mod 4, wy # ws.

Case (iii): ¢ = Sym®m[3] & (m ® m2[3]) @ [5], where m, my € IL},(PGL;) have motivic
weights wy, wy respectively. In this case, the representations of SLy(C) in the restriction of
f4 along v are all odd dimensional, thus €,(y) = 1 by Proposition 5.6.4. On the other side,

7 acts on Sym® 7, (3] by 1 and on 7, ® m3[3] by —1. We have p; = w; + 1 or % + 1.

(1) If wy > wsy, then uy = wy+1. The condition that ¢ € W;(F,) implies that wy > wqe+4,
thus wy +1 > wy > w; — 1 > W + 1, which are larger than other weights. So
g = —“’1‘2“”2 + 1 and pl\Z(y) = —1.

(2) If wy < ws, then py = w + 1. Similarly, we have w; < wy — 4. Now 4 must be

wy + 1 or #2541, 50 py(y) = 1 if and only if puy = #25* + 1. This is equivalent to
we > 3w;.

2

By Arthur’s multiplicity formula, m(m,) = 1 if and only if wy > 3w;.

Case (iv): 1 = Sym* 7, @ (Sym? m; ® mo @ 73) @ (Sym?® 7, ® Sym? 73), where 7, o, T3 €
IT,;,(PGLy) have motivic weights wy, ws, w3 respectively. In this case, £,(y) = 1 since the
parameter is tempered. On the other side, v acts on Sym* 7 and Sym?m; ® Sym? w3 by 1
and on Sym® 7, ® T, ® m3 by —1. We denote the ratios wy /ws, ws/ws by 1,75 respectively,
and denote the multiset of elements p/ws, p running over the eigenvalues of ¢ (¢), by w.
We still order the elements of W by g1 > po > -+ > pge. The largest one py must be ry 41
or 2ry or v + %

(1) If 1y < 1,79 < 1, then gy =71 + 1. Now g = 21y 01”10““1"'%-

(a) If 1y > 1/2 and ry < 2r; — 1, then ps = 2r;. Now ri +1 > 2r; > 1| + ’7—;1 >
ry + 1;”, which are larger than other 22 elements, thus puys = r; + 1;& and
Vv —
py(y) = —1.
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(b) Ifry < 1/2and ro < 1—2ry, then uy = 1. Now pz(v) = lifand only if py = 1—7y,
which is equivalent to |4r; — 1] < 7.

(c) If ro > |27y — 1|, then pp = 1 + 2. Now py(v) = 1 if and only if py = 27y or
1, which is equivalent to ro < 4r; — 1.

(2) If ry > 1,79 <2r; — 1, then gy = 2. Now p%(fy) = 1 if and only if py = r + 1, which
is equivalent to ry > 3.
(3) If 7o > 1,79 > 2r; — 1, then uy = r + 7'22—“ Now 1o belongs to the (multi)set

1 1
{7"1+]. 27’1,T1+T2 7"2;— .

(a) If r; < 1 and 7y < 2r; + 1, then uy = r; + 1. Now pz(y) = 1 if and only if

gy = ’”QH , which is equivalent to 7o < 4r; — 1.

(b) If rqy > 1 and ry < 2ry + 1, then py = 2r;. Now py = min(ry + 1,7 + ”2_1), thus
py(v) = 1if and only if r, < 3.

(¢) If ry > 1 and ro > 2ry + 1, then pus = r; + 7"22_1. Now pz\Z(y) = 1 if and only if

by = T22i1, which is equivalent to r9 < 4ry — 1 or ro > 4r; + 1.

(d) If ry < 1 and ry > 2ry + 1, then pp = 2. Now py(y) = 1 if and only if
[y = T1 + or ”22—“ — 11, which is equivalent to that ro < min(3,4r; 4+ 1) or
ro > max(3, 47’1 +1).

7‘21

In conclusion, by Arthur’s multiplicity formula, m(7,) = 1 if and only if wy, we, w3 satisfy
one of the conditions listed in the proposition. O

6.3.7 H— (A[15’44’15] x AT o A?S’IM]) S

By §4.6.9, the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to

1+1®St®St+Sym?*St® (St®1+1®St)+Sym*St®1®1,

and the centralizer of H in Fy is Z(H) ~ Z /27 x 7./ 2.
For ¢ € Wa;(Fy) satisfying H(¢)) = H and m(m,) = 1, there are three possible endoscopic
types:
(i) (5,(8,1),(5,1),(4,2),(2,2),(1,1)). A global Arthur parameter of this type is of the

form:
Sym* 1 @ (Sym® m @ m3) ® Sym® m[2] @ m2[2] @ [1], 7y, ™ € 1,5, (PGLy).

(i) (5,(4,1),(2,4),(2,4),(1,5),(1,1)). A global Arthur parameter of this type is of the
form:
(m1 @ m3) © m1[4] © mo[4] @ [5] @ [1], 71, 72 € 1T, (PGLy).

(iii) (5,(8,1),(8,1),(5,1),(4,1),(1,1)). A global Arthur parameter of this type is of the
form:

Sym* m; @ (Sym® 1, ® o) @ (Sym?® 7, @ 73) @ (72 ® 73) B [1], 71, T, T3 € Halg(PGLg).
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For this subgroup H of F,, the restriction of the adjoint representation f, of F4 to H is
isomorphic to

1® (Sym®’St®1+1®Sym?St) +Sym*St®1® 1+ Sym®St ® (St ® 1 + 1 ® St)
+Sym*St ® St ® St + Sym°St®1® 1

Proposition*6.3.11. For a discrete global Arthur parametery € Va5(Fy) satisfying H(y)) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o Sym*m @ (Sym®m ® ) ® Sym® 7, [2] © m[2] ® [1], where m, ™ € 11, (PGLy) have
motivic weights wy, wo respectively and satisfy one of the following conditions
— wy < wq or we > 4wy + 1, and wy = 3mod 4,
— 3w; < wy < 4wy — 1 and we = 1 mod 4.

o (m ®@my) ®m4] ©mld] @ [5] @ [1], where m,my € 153, (PGLy) have motivic weights
wy > wy respectively and w; = 3mod 4, wy = 1mod4, wy < wy — 4.

o Sym* m @ (Sym® 1, ®72) @ (Sym® m @m3) B (T ®@73) B[1], where w1, T, T3 € 11, (PGLy)
have motivic weights wy and wy > w3z respectively satisfying one of the following
conditions:

— w1 > w3 and 2w — w3 < wy < 2wy + ws;
— w3 < 3wy < wy < 2w + ws;

— wy < ws < 3wy, wy > 4wy + ws.

Proof. We take a set of generators {c = (—1,1,1),01 = (1,1, 1)} of Cy, = Z(H) ~ Z /27 x
ZJ2Z. Let x1, x2 be two generators of the character group of Cy, such that x1(0) = x2(01) =
—1,x1(01) = x2(0) = 1.

Case (i): ¢ = Sym* 7, @ (Sym® 1, ® my) @ Sym?® m[2] ® m2[2] @ [1], where 7,7 €
Halg<PGL2> have motivic weights w;q, wo respectively. In this case, the restriction of §, along
1) is isomorphic to:

Sym®m; @ (Sym* m ® m3[2]) & (Sym® m @ m2) @ Sym® m1[2] @ Sym® 1, & Sym® o @ [3).
By Proposition 5.6.4 we have:

ul0) = £(Sym m) = (T, +T,) = (~1)OU DO/ -

€¢( ) e(Sym & 7T2) (Sym3 7_(1) _ (_1)max(4w1,w2)+max(2w1,w2)+(w271)/2'

So €4 = X1 or x1X2. On the other side, the largest weight p; is 2w or 3w1+w2
(1) If wy > wy, then py = 2w;. Now 2w, > 3w1+w2 > 3w1+1 > 3’”; ! and they are larger
than other weights, thus py = 24=1 and Py = X1X2-

( ) If wy; < wy, then 1 M NOW 1o = 2w, or w1—5w2_

(a) If wy < 3wy, then ps = 2wy. Now py = wl;””? or 3“’1i1 , thus pl\z =1 or ys.

wi+wsg wgil

(b) If wy > 3wy, then pp = 172, Now py = 2w, or , thus p¥ = 1 or x1xe.
Notice that puy = 2w, if and only if 2w, lies between “’Q—H and ¥2- 1, which can
not happen. So py, = x1x2 for any wy > 3w; and w;, # 4w1 + 1.
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Hence by Arthur’s multiplicity formula, m(7,) = 1 if and only if one of the following condi-
tions holds:

e Wy < wip Or wy > 4wy + 1, and wy = 3mod 4;
e Jwy < wy < 4w; — 1, and wy = 1 mod 4.

Case (ii): ¢ = (m ® m) ® m[4] ® m[4] ® [5] ® [1], where m, m € II}},(PGL,) have

alg
motivic weights w; > ws respectively. In this case, the restriction of f4 along 1 is isomorphic

to
Sym? 1 @ Sym? mo @ (m @ m2[5]) & mi[4] B me[4] @ [7] & [3].

By Proposition 5.6.4 we have:
ep(o) =¢e(m) - e(m) = e(ly,) - €(Lu,) = (_1)(w1+w2)/2+1
€¢(U1) =¢e(m) = e(Iy,) = (_1)(w2+1)/2.
On the other side, the condition ¢ € Wa5(Fy) implies that we < wy — 4. Since

w1 + W ’UJ1—|—3 U)1+1 w1—1
2 2 2 2

and they are larger than other weights, we have py = 122 and py = -1, The global
component group C,, acts on m; ® my and m[4] by x2 and x; respectively, thus by Proposi-
tion 6.2.1 the character p://) = X1X2- By Arthur’s multiplicity formula, m(m,) = 1 if and only
if wy = 3mod4,wy = 1mod4 and wy < wy — 4.

Case (iii): ¢ = Sym* 7, @ (Sym® 71, ® m3) @ (Sym® 1, @ 7m3) @ (72 ® 73) @ [1], where
Ty, Mg, T3 € Hjlg(PGLQ) have motivic weights wq, wo, w3 respectively and we assume that
wy > ws. In this case €y is trivial since v is tempered. On the other side, C, acts on
the four summands Sym4 T, Sym3 T ® o, Sym3 m ® mg and m ® w3 by 1, x1, x1X2 and Y2
respectively. Denote the ratios wy/ws, wy/ws by 71,79 respectively and the corresponding
multiset by W as in the proof of Proposition 6.3.10. We still order the elements of W by
Jh1 > g > - -+ > lgg, then by Proposition 6.2.1 the character qu = 1 if and only if u; and

14 come from the same irreducible summand of . The largest element pu; is 2r; or 3”%

ro+1
or 5 -

(1) If ro < 7y, then py = 2r;. Now 2r; > 3”2”2 > 3”2“ > 3”2_7"2 > rq, thus pZ} is not
trivial.
(2) If o > ry and r; > 1/3, then puy = 3”%
(a) If ry > 1, then p;, = 1 if and only if pq
ro < 2r1 + 1.
(b) If 71 < 1, then py, = 1 if and only if py = n,

— ritre
2

, which is equivalent to 2r; — 1 <

(I) pa = "5 if and only if 2 < 231 < 30H & 3y <7y < 27y + 1.

(IT) puq = 25" if and only if 257 > 3L by > 4y + 1.
(3) If ry < 1/3, then yy = 2. Now zH r22n 30t are larger than 21, so 221 can

2 0 2 2 2 2
not be iy and thus py, # 1.

In conclusion, by Arthur’s multiplicity formula, m(7,) = 1 if and only if wy, ws, w; satisfy
one of the three conditions in Proposition 6.3.11. O
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6.3.8 H =TI, AF" /s

By §4.6.13, the restriction of the 26-dimensional irreducible representation Jq of Fy to H
is isomorphic to

14> Steste1el,

Sym
and the centralizer of H in Fy is Z(H) ~ Z/27 x 7./27 x 7./ 2.
For ¢ € W;(F,) satisfying H(¢)) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (8,(4,1),(4,1),(4,1),(2,2),(2,2),(2,2),(1,1),(1,1)). A global Arthur parameter of
this type is of the form:

( @ Uy ®7Tj) S¥) (@ 71'1[2]) S5 [1] s> [1], T, M9, T3 € Hilg(PGLQ)

1<i<5<3 1<:<3

(i) (8,(4,1),(4,1),(4,1),(4,1),(4,1),(4,1),(1,1),(1,1)). A global Arthur parameter of
this type is of the form:

( @ T ®’7Tj> I, [1] %, [1], T, T, T3, T4 € Hig(PGLg)

1<i<j<4

For this subgroup H of Fy, the restriction of the adjoint representation f4 of Fy to H is
isomorphic to

D Sym’St@101e1+ ) St@St®1@1+St®St® St®st.

Sym Sym

Proposition*6.3.12. For a discrete global Arthur parameter € Vay(Fy) satisfying H(y)) =
H, the multiplicity m(my) = 1 if and only if 1 has the form:

1<i<j<3 1<i<3
where w, Ty, T3 € Hjlg(PGLg) have motivic weights wy > wo > ws respectively such that one
of the following conditions holds:

e wy > wy+ws+ 1, and w; = w3 = 3mod4, wy = 1mod4;

o wiy <wy+wz—1, and wy = w3z = 1mod4, wy = 3mod4.
Proof. We take a set of generators {y = (—1,1,1,1),n = (1,—1,1,1),72 = (1,1,—-1,1)} of
Cyp=%2Z(H) ~Z/2Z x |27 x 7| 2Z.

Case (i): ¢ = (Bcicjcs TiOT)B(P i3 mi[2)) B[] S[1], where 71, 7p, w3 € 1155, (PGLy)
have motivic weights w; > ws > w3 respectively. In this case, the restriction of f; along ¢ is
isomorphic to

(m1 @ My ® m3[2]) @ ( @ 7T7;®7Tj> e (@ SmeWi) ® <@ 7rz-[2]> @ [3].

1<i<j<3 1<i<3 1<i<3
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By Proposition 5.6.4 we have:

ep(7) = e(m) - e(m ® Ty @ m3) = (—1)mex(wrwztws)+(wi=1)/2
ep(m) = (M) - £(m) ® Ty ® m3) = (—1)mex(wrwztwa)+(w2=1)/2
61/1(72) = €(7‘r3> . 8(7‘(’1 R Ty @ 71-3) _ (_1)max(w1,w2+w3)+(w371)/2.

On the other side, the largest element p; must be %

{“’1;1, “’124, watwsl  Since there is no integer between ““TH and ““2*1, we have juy # 224,
So szp is the product of two characters of C, coming from m ® m and m[2] respectively,

thus py,(7) = py(12) = 1 and pj(n) = —1.
By Arthur’s multiplicity formula, m(7,) = 1 if and only if one of the following conditions
holds:

e wy > wy+ ws+ 1, and w; = wz = 3mod 4, wy = 1 mod 4;
e wy < wy+ ws— 1, and w; = w3 = 1 mod 4, wy = 3mod 4.

Case (ii): ¢ = (D<o jcym @ ;) © [1] @ [1], where 71, mp, w3, 14 € 115;,(PGLy) have
motivic weights w; > wy > w3 > wy respectively. In this case, ¢, is trivial. On the other side,
(1 must be % Notice that Cy acts on 6 components m; ® 7; via 6 different characters,

SO plvb is trivial if and only if puy = “5*2. However,

and p4 is the middle one of

Wy, — Wy Wy — W3 Wy, — Wy W1 + Wy w1 + ws w1 + W
2 2 2 2 2 2 ’

thus p,, # 1 and m(my) = 0. O

6.3.9 H=AMxq,

In this case, we need to consider cuspidal representations 7 € II3), .. (PGL7) such that the
image of the corresponding irreducible representation £; — SL;(C) is a compact Lie group
of type Go. This kind of representations correspond to discrete automorphic representations

of the unique semisimple anisotropic Z-group of type Go with stable tempered type, which

have been studied in | , §8], conditional to the existence of L7 and Arthur’s multiplicity
formula. We denote by HS@(PGLﬁ C 115, e (PGL7) the subset of these representations.

The Hodge weights of a representation m € H,Slg(PGLﬁ have the form w +v > w > v, where
w, v are even integers.

By §4.6.4, the restriction of the 26-dimensional irreducible representation Jq of Fy to H
is isomorphic to

Sym? St ® V; + Sym* St ® 1,

where V7 is the 7-dimensional irreducible representation of Gy, and the centralizer of H in
F, is trivial.

For ¢ € Wa;(F,) satisfying H(¢) = H and m(m,) = 1, there are two possible endoscopic
types:

(i) (2,(7,3),(1,5)). A global Arthur parameter of this type is of the form:

m[3] @ [5], 7 € IS2(PGLy).

alg
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(i) (2,(21,1),(5,1)). A global Arthur parameter of this type is of the form:

(7 ® Sym®7) @ Sym* 7, 7 € IS2(PGL;), 7 € T4, (PGLy).

alg alg

Proposition*6.3.13. For a discrete global Arthur parametery € Wa5(Fy) satisfying H(y)) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:

o 7[3] @ [5], where w € Hg;(PGLﬂ has Hodge weights w + v > w > v such that v > 4;

o (7 ®Sym?7)® Sym* T, where 7 € Hg;(PGLﬂ has Hodge weights w +v > w > v and

7 € 14, (PGLy) satisfies w(r) ¢ {52, %, 2},

Proof. This follows from the condition ¢ € W ;(F,) and the fact that Cy, is trivial. N

6.3.10 H — <A[126’114] o« A[126’114] y Sp(2)> /MQA

By §4.6.6, the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to

1+StSt®1I+St®1Vi+10St@Vi+1R01® A"V,

where Vy is the standard representation of Sp(2) and A*Vy is the 5-dimensional irreducible
representation of Sp(2). The centralizer of H in Fy is Z(H) ~ Z /27 x 7./27.

For any 7 € H:f;f (PGL4), we denote by A7 the representation in I1g), .. (PGLs) corre-

sponding to the following irreducible representation of £yz:
Y A*
L7 — Sp(2) — SL5(C).

For ¢ € W;(F,) satisfying H(¢)) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (5,(8,1),(5,1),(4,2),(2,2),(1,1)). A global Arthur parameter of this type is of the

form:

Nr®(r@7) 2] ®7[2] @ [1], € ILP(PGLy), T € I (PGLs).

alg alg

(i) (5,(8,1),(8,1),(5,1),(4,1),(1,1)). A global Arthur parameter of this type is of the
form:

NTBERT)® T RR)®(n@n)® 1], 7€ ILP(PGLY), 71, 72 € L (PGL,).

alg alg

For this subgroup H of F,, the restriction of the adjoint representation f, of Fy to H is
isomorphic to

(Sym?St®1+1® Sym?St) ® 1+ (St®1+1® St) @ V4
+St®@St® AV, +1®1® Sym* Vy.

Proposition*6.3.14. For a discrete global Arthur parameter iy € Va5(Fy) satisfying H(v) =
H, the multiplicity m(my) = 1 if and only if ¢ is one of the following parameters:
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e N'1®(m@7)B7[2]®T[2|B[1], wherew € Halg (PGLy) has Hodge weights wy > we > 1
and T € Halg(PGLz) has motivic weight v satisfying one of the following conditions:
—w; <v<w +wy— 1w +ws =0mod4,v =1mod4;
—w; —wy+ 1 <v<wy,w +ws =0mod4, v =1mod4;
— Wy <V < w —wy— 1w +ws =2mod4,v = 1mod4;

— v >w +wy+ 1, w +ws =0mod4, v = 3mod4;

v < min(w; — wy — 1, ws), w1 + wy = 0mod 4, v = 3mod 4;
— max(w; —wy + 1, wy) < v < wy,w; + wy = 2mod 4, v = 3mod 4.

e N'TR(TQRT) B (TRR)® (1 ®n) &[], where w € Halg (PGLy4) has Hodge weights
wy > wy and T, Ty € Halg(PGLg) have motivic weights vy > vy respectively satisfying
one of the following conditions:

— Uy < wy <V and wy — Wy — Vg < V1 < Wy — Wa + Vo

— Wy < Vg < wy and vy > wy + Wy + Va5

— Vo < wp <V < Wy — Wy + Vy.
Proof. We take a set of generators {o = (1,1,—1),01 = (=1,1,1)} of Cy = Z(H) ~ Z/2Z x
Z/27. Let x1, x2 be two generators of the character group of Cy, such that x;(o) = x2(01) =
—1and x1(01) = x2(0) = 1.

Case (i): v = Nt @ (r@7)D7[2] B T[2] B [1], where 7 € Halg (PGL4) has Hodge weights
w; > wy > 1 and 7 € Halg(PGL2> has motivic weight v. Here we assume that Arthur’s
SLy(C) is sent to the first Aj-factor of Hc. In this case, the restriction of f4 along v is
isomorphic to
Sym? 7 @ (A1 ®7[2]) @ (1 ® 7) © 7[2] ® Sym? T @ [3].

By Proposition 5.6.4 we have:

ep(0) = (m) = (L + L) = (—1)rF02)/2+1,
€w(01) = 5(/\*71. ® 7_) _ (_1)maX(w1+w2,v)+max(w1—w27v)+(v+1)/2'

On the other side, the group C, acts on A*m, 7 ® 7, 7[2], 7[2] by 1, Xx1X2, X1, X2 respectively.

The largest element j; must be 4542 or wl;”

(1) If wy > v, then py = ez, Now gy = and p,, = X1
(2) If wy < v, then py = w1+” Now g is w1+w2 or ¥,

p
= Wikl and Py = Xa-

(b) If wy < v, then py = wQTJr” Now pgq = ”il and py, = X1

w1:|:1

w1 twa +w2

(a) If wy > v, then py = Now 14

By Arthur’s multiplicity formula, m(m,) = 1 if and only if 7 and 7 satisfy one of the
conditions listed in the proposition.

Case (ii): v =AN'T® (7@ 7) B (T®T2) ® (11 ® 72) ® [1], where 7 € Halg (PGLy) has
Hodge weights w; > wy and 7,7 € Halg(PGLQ) have motivic weights v; > vy respectively.
In this case €y is a trivial character. On the other side, since C, acts on four non-trivial
irreducible summands of ¢ by four different characters, py, = 1 if and only if y; and 4 come

from the same irreducible summand. Now g must be “1E%2 o Wi o vitvs
H1 2 2 2
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(1) If wy > vy, then puy = % and 4 can not be #1572, thus pi is not trivial.

(2) If vy > wy and wy > vy, then py = Y52, Now py is trivial if and only if iy = #25%
or “5¥2,
2

(a) pg = "5*2 is equivalent to that vy — wy > max(v; — vo, w1 + wz, wy + vy). This
holds if and only if vy > wy and vy > wy + wa + vs.

(b) py = “’QTJ““ is equivalent to that wy + v; > max(w; — wsy, w; — vy) and wy + vy is
smaller than exactly two of {wy + wa, vy + v, wy + vo}. This holds in two cases:
w; < v <wp — wy+ vy or

Wo > Vg, W1 > V1, W1 — Wy — Vg < V] < Wy — Wa + Vo.

(3) If vy > wy, py = 52, We have

V1 — VU U1 —wWp U1 — W2 VUt W2 vt wp | U+ Vg
2 2 2 2 2 2

thus p4 can not be “5* and p% is not trivial.

In conclusion, by Arthur’s multiplicity formula m(m,) = 1 if and only if one of the following
conditions holds:

o Uy < wy < v and wy — we — Vg < U < Wy — Wy + Vo
o Wy < vy < wip and vy > wy + wa + Vo
o Uy < wy <V <Wp — W2+ Va.

6.3.11 H = (A?G’l“‘] X Sp(3)> i

By §4.6.3, the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to
St @ Vg +1® Vi,
where Vg is the standard 6-dimensional representation of Sp(3), Vi4 = A*Vj is the 14-

dimensional irreducible representation of Sp(3) that is a sub-representation of A*Vg. The
centralizer of H in Fy is Z(H) ~ Z/27.

For any 7 € Hifgﬁ(PGLﬁ), we denote by A*m the representation in I3y, .. (PGLi4) corre-

sponding to the following irreducible representation of £z:
L7 2% Sp(3) 25 SL1(C).

For ¢ € Wa;(F,) satisfying H(¢)) = H and m(my) = 1, there are two possible endoscopic
types:
(i) (2,(14,1),(6,2)). A global Arthur parameter of this type is of the form:
Nr @ (2], 7 € L0 (PGLy).

(ii) (2,(14,1),(12,1)). A global Arthur parameter of this type is of the form:

AN @ (r@7), 7€ I (PGLg), T € 115 (PGLy).

alg alg
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For this subgroup H of F,, the restriction of the adjoint representation f, of F4 to H is
isomorphic to
Sym?St ® 1 + St ® Vi, + 1 ® Sym?* Vg,

where V, is another 14-dimensional irreducible representation of Sp(3) that is not equivalent

to V14 = /\*Vﬁ.

Proposition*6.3.15. For a discrete global Arthur parametery € Vay(Fy) satisfying H(y)) =
H, the multiplicity m(my) = 1 if and only if 1 is one of the following parameters:

o N'm @ 7[2], where T € HEIPES(PGLG) has Hodge weights wy > wy > w3 > 1 and one of

the following conditions holds:
— wyp > we +ws + 1 and wy + wy + w3 = 3mod4;
— wy < wy +ws — 1 and wy; + we + w3z = 1 mod 4.

e N*T@® (T ®T), where T € HSIZG(PGLG) has Hodge weights w; > wy > w3 and T €

Hig(PGLg) has motivic weight v satisfying one of the following conditions:
— |wy —wy —ws| < v < ws;
— W) — Wy +ws <V < Wy,
— w3 < v < min(wsy, wy — we — W3);
— max(wy, w; — we — w3) < v < W — Wy + Ws;
—w; <v<w;+wy — ws;
— vV >w; + wy + ws.
Proof. We denote the generator (—1,1) € Z(H) = C, by 7.

Case (i): v = A"t @ 7[2], where 7 € Higﬁ(PGLG) has Hodge weights w; > wy > ws > 1.

In this case, the restriction of 4 along ¢ is isomorphic to
Sym? 7 @ '[2] @ [3],

where 7' € 11,3, (PGLy4) corresponds to

£ 75 Sp(3) Y44 SLu,(C).
Notice that A3V ~ V1, @ Vg, thus the Hodge weights of 7’ are
Tw,, Fwo, +ws, £wy = wy £ ws.
By Proposition 5.6.4 we have:

Eyp (7) =& (Iw1 + Iw2 + Iw3 + Iw1+w2+w3 + Iw1+w2*W3 + Iun*werws + I|w1*w2*w3\)
_ (_1)(w1+w2+w3+1)/2+max(w1,w2+w3)'

On the other side, v acts on A*m by 1 and on 7[2] by —1. The largest element p; must be
wrws  Now iy = “’1;[1, thus p;(y) = —1. By Arthur’s multiplicity formula, m(r,) = 1 if
and only if one of the following conditions holds:
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e wy > wy+ w3+ 1 and wy + wy + w3 = 3mod 4;
e w; < wy+ws—1and w; +ws +wsz = 1 mod4.

Case (ii): v = N1 (T ® 7), where 7 € Hif:;(PGLG) has Hodge weights w; > wy > ws
and 7 € IIj,(PGL;) has motivic weight v. In this case e, is trivial. On the other side, the

w1 +wg w1+v
largest p1 must be #1572 or “L=.

(1) If v < wo, then py = ¥Fw2,

a) If v < ws, then py is the middle one in {¥2f%s @ity wi—vl Hence pY = 1 if and
H 2 D) Py

2
only if g = ¥25%3 which is equivalent to v > |wy; — wy — wy|.

(b) If v > ws, then puy is the middle one in {5 witws wizwa} Hence py = 1 if and

only if uy = %, which is equivalent to v > w; — w9 + w3 or v < Wy — wy — ws.
(2) If v > wo, then iy = ¥552.

(a) If v < wy, then py is the middle one in {#2F0, wifws wizwa} Hence py) = 1 if and

only if py = w22+”, which is equivalent to w; — ws — w3 < v < Wy — wo + w3.
(b) If v > wy, then puy is the middle one in {2 tfws v=a} Hence py, = 1 if and
only if py = “i%, which is equivalent to v > wy + wy + w3 or v < wy + Wy — w3,

In conclusion, m(my) = 1 if and only if one of the conditions on 7, 7 listed in the proposition
is satisfied. n

6.3.12 H = Spin(8)

By §4.6.5, the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to
192 + Vs + V& + Vi

where Vg is the 8-dimensional vector representation of Spin(8), i.e. the composition of
Spin(8) — SO(8) with the standard 8-dimensional representation of SO(8), and Vg, are
two 8-dimensional spinor representations. The centralizer of H in ¥y is Z(H) ~ Z /27 X Z/27Z.

For ¢ € W, (F,) satisfying H(¢)) = H and m(my) = 1, there is only one possible
endoscopic type: (5,(8,1),(8,1),(8,1),(1,1),(1,1)). A global Arthur parameter of this type
is of the form:

p=n®Spint 1P Spin~ 7w B[] D[1], 7 € HSIOgS(PGLg),
where we lift ¢, : Lz — SO(8) — SOg(C) to Un Ly — Sping(C), and Spin® 7, %« = + is the
representation corresponding to
{p\;l' . VS*pin
L7 — Sping(C) — SLg(C).

Proposition* 6.3.16. For any discrete global Arthur parameter v € Way(Fy4) satisfying
H(y) = H, we have m(my) = 0.

Proof. Let ¢ = 7@ Spin* 7 @ Spin~ 7 & [1] & [1], where 7 € Higs (PGLg) has Hodge weights
2wy > 2w, > 2ws > 2w,. The global component group C, ~ Z/2Z x Z/27Z and it acts on

7, Spin™ 7, Spin~ 7 by three different characters.
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Since €y is trivial, by Arthur’s trace formula m(r,) = 1 if and only if p;, = 1, which
is equivalent to that py and py come from the same irreducible summand of ¢ by Proposi-
tion 6.2.1.

In this case, the largest element j; must be w, or itwetwstws

2
(1) If wy > wy + w3 + wy, then py = wy. Now we have
w; +wy — w3 +wy W+ w3+ w3z — Wy Wi+ W+ W3+ Wy

< < < <
(0] 9 9 92 M1,

thus py does not come from 7. Hence p@\z/, is not trivial.
(2) If wy < wy 4 w3 + wy, then g = WFL2Fwatws  Now we have

wl—w2+w3—w4 w1+w2—w3—w4
2 2

’LU1+1U2:‘:(U)3—1U4)> <,u
1

< min <w2, 5

and
|wy — wy — w3 + wy|

2

is also smaller than at least 4 weights, hence

( —w1+w2+w3—|—w4>
< max | wy,

2

Wy — Wy + W3 — Wg Wy + Wy — W3 — Wy |w1—w2—w3+w4|}

/'L4¢{ 2 ’ 9 3 9

So py does not come from Spin™ 7 and py, is not trivial.

In conclusion, by Arthur’s multiplicity formula the multiplicity m(my) is always 0. O

6.3.13 H = Spin(9)

By §4.6.2, the restriction of the 26-dimensional irreducible representation J, of Fy to H
is isomorphic to
1+ Vg + Vgpin,

where Vy is the standard representation of Spin(9), Vgpin is the 16-dimensional spinor rep-
resentations. The centralizer of H in Fy is Z(H) ~ Z/27Z.

For ¢ € Wa;(Fy) satisfying H(¢)) = H and m(my) = 1, there is only one possible
endoscopic type: (3,(16,1),(9,1),(1,1)). A global Arthur parameter of this type is of the
form:

Y =7 @®Spint @ [1], 7 € I52°(PGLy),

alg

where we lift ¢, : Lz — SO(9) — SOy(C) to Ur Ly — Sping(C), and Spinw is the

representation corresponding to

Lz 7 Sping(C) 278 SLy(C).

Proposition* 6.3.17. A discrete global Arthur parameter 1 € Ua;(Fy) satisfies H(v) = H
and m(my) = 1 if and only if » = 7@ Spin 7w & [1], where w € Hggg (PGLy) has Hodge weights

wy > we > w3 > Wy Satisfying wo + wy — wy < wy < wo + w3 + wy.
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Proof. Let ¢ = @ Spinm @ [1], where 7 € HSEQ(PGLQ) has Hodge weights wy > wy > w3 >
wy. The global component group C, is a cyclic 2-group, and it acts on 7 trivially and on
Spin 7 by its non-trivial character.
Since the parameter is tempered, ¢, is trivial. By Arthur’s multiplicity formula, m(7y) =
Lif and only if p/ = 1, which is equivalent to that y; and ji4 come from the same irreducible
wy w1 twatw3+wy
1 :

summand of ¢ by Proposition 6.2.1. In this case, the largest element p; = < or

(1) Ifw; > wo+ws+wy, then py = 4. By our discussion in the proof of Proposition 6.3.16,
14 does not come from 7, thus p@\g is not trivial.

(2) If wy < wy + w3 + wy, then py = w. Now 4y = max (%,%)

Hence qu is trivial if and only if wy + wy > wo + ws.

In conclusion, m(m,) = 1 if and only if we + w3 — wy < wy < wy + w3y + wy. O

6.3.14 H=F,

For stable tempered parameters, the component group is trivial and as a direct conse-
quence we have:

Proposition* 6.3.18. For any discrete global Arthur parameter v € Vaj(Fy4) satisfying
H(y) = F4, we have m(my) = 1.

6.4 Classification of representations contributing to Ay, (F,)

Recall that in §5.1, for each irreducible representation V, with highest weight A of Fy =
F4(R), we have defined its multiplicity space in Lgisc(Fy4):

Av, (F1) = Homp, @) (Vy, Laise(Fa)71®),

which parametrizes level one discrete automorphic representation 7 of F4 such that 7o, >~ V.

We have a dimension formula Corollary 5.1.8 for this space. Now with results in §6.3,

we can study the discrete global Arthur parameters ¢ € W,;(F,) whose corresponding

representation 7wy, € II(Fy) has multiplicity 1 in Lgis(F4) and contributes to Ay, (Fy).
According to Lemma 5.1.5, we have:

dim Ay, (Fy) = > mn).

TEIl(Fy), oo™V

Using discrete global Arthur parameters, we rewrite this formula as

dim Ay, (Fy) = Z m(my) = Z m(my),

TZJE\I/AJ(F4)7COO(¢):COO(V>\) weleAJ(F4)’ Coo(w):)‘+p

where p is the half sum of positive roots of Fy.
If the endoscopic type of ¢ € Wa5(Fy) is not stable, i.e. H(¢) is the conjugacy class of
a proper subgroup of Fy = F4(R), then it must have one of the types listed in §6.3. For
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each subgroup H of F, listed in Theorem 4.6.7, we can determine the discrete global Arthur
parameters ¢ € U5;5(F,) satisfying H(¢) = H and m(m,) = 1. The difference

dim Ay, (Fs) = #{¢ € Uas(Fa) |[H(Y) # Fu, o (¢) = p+ A, m(my) =1} (6.2)

is the number of discrete automorphic representations m of ¥4 with archimedean component
Too =~ V) whose global Arthur parameter is tempered and stable. In other words:

Proposition* 6.4.1. Let A be a dominant weight of ¥4, we define the number
Fy(A) := #{m € Heusp(PGLag) | Coo(T) = 1o(A + p) € 8log s, H(m) > Fy},

where 1o : fg — slyg is the 26-dimensional irreducible representation of f4, and define w(\)
to be twice the mazimal eigenvalue of A+ p. Then we have a formula for the number F4(X),
and we list nonzero Fy(X) for all the dominant weights A such that w(\) < 44 in Table 11.

Proof. The formula for F4()\) follows from (6.2) and our classifications in §6.3. This formula
involves the numbers of elements in one of the following sets with certain Hodge weights:

IT4, (PGLy), TP (PGLy), ILP (PGLg), 152 (PGLy ), IE2° (PGLy).

alg alg alg alg

For II;,(PGL;), this number is related to the dimension of cusp forms for SLy(Z), as ex-

plained in Example 5.4.6. For other four sets, we can find some tables in [C'R] and [C'T].
A | program to compute Fy(A) for dominant weights A satisfying w(\) < 60 is
provided in [Sha]. O

Remark 6.4.2. The formula for F4()\) has too many terms, thus it is not reasonable to write
it down here. However, under some hypothesis on A\, many terms vanish and this formula
becomes much simpler. For example, if

e \;>0fori=1,234,
o )\1>)\2+)\3+>\4+3,
o and A3, \; are both odd,

then we have the following formula:
Fi(A\) = dim Ay, (Fy) — O (N}, Ay, A5, A)),

where O*(wy, ws, w3, wy) is the number of equivalence classes of level one cuspidal orthogonal
representations of PGLg with Hodge weights wy; > ws > w3 > w4 > 0, and

AL =20 + 60 + 403 + 205 + 14, Ny = 21 + 209 + 23 + 20\ + 8,

In Table 11, we find that the smallest w(\) for A such that Fy(\) # 0 is 36 and the
corresponding dominant weight is A = w; + 2wy 4 2w4. We are now going to prove this fact
without using Theorem 6.3.1, in order to give readers who skip the proof of Theorem 6.3.1
an example of how we apply Arthur’s conjectures.
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Proposition* 6.4.3. There is a level one cuspidal automorphic representation m of PGLog
with motivic weight 36, such that the Sato-Tate group H(m) of m is isomorphic to the compact
Lie group Fy.

Proof. We fix A = @y + 2wy + 2wy. In Table 6, we find that dim Ay, (F4) = 1. We denote
the unique automorphic representation contributing to Ay, (F4) by 7y and its corresponding
discrete global Arthur parameter by 9. The eigenvalues of ¢ (m) = A + p are:

—18,-16,—13, 12,9, -9, —7,—6, -5, —4, -3, -2,0,0,2,3,4,5,6,7,9,9, 12,13, 16, 18.

Now it suffices to show that H(vg) = Fy.

We can exclude some possibilities of H(1)y) and endoscopic types by an argument of
motivic weights. For example, if H(yy) = A[117,9] and ¥y = Sym'®7 @ Sym® 7 for some
7 € II;,(PGLy), then w(mg) = 16w(m) > 16 x 11 = 176, which contradicts with w(mg) = 36.
We also notice that 1 is not an eigenvalue of c.(mp), thus 1y does not have irreducible
summands of the form

m[d], where 7 € II}; (PGL,),n = 1mod 2 and d > 3.

alg

Now we list all possible types for 1y:

(1) g is a stable and tempered parameter;

2) o = (@19@53 T ® ;) B (@1§¢§3 mi[2]) @ [1] @ [1], 71, w2, 73 € Haiig(PGLQ);
Vo = (Drcicjcs @ @ 75) © [1] @ [1], 11, 79, 73, 74 € T, (PGLy);

Yo=ANT® () D2 @72 @ 1], 7 € IIPY(PGLy), 7 € 1T (PGL,):

(2)
(3)
(4) alg alg
(5) Ybo=NTR(TRT)D(TRTR)E (MR ®[l],7c Hi@(PGL@,ﬁ, 73 € 11}, (PGLy);
(6) Yo =NmTD72,T € Hilpgf"(PGLﬁ);
(7)
(8)

)

=N @ (1@ 7), 7 € ILPS(PGLg), T € ITL (PGL,):

alg alg

=7 @ Spin" 7@ Spin~ 7d [ [1],7 € HEES(PGLS);

o=@ Spinm @ [1], 7 € T (PGLy).

alg

The definitions of some notations like A*, Spin® can be found in §6.3. Now we are going to
show that vy can not be of the types listed above except (1).

Type (2): The Hodge weights of the irreducible summand 7;[2],7 = 1,2, 3 are w(m;) £ 1,
thus there are two consecutive integers wmEL i the eigenvalues of c.(my). The possible
w(m;)’s are 5,7,9,11,13,25. However, H;‘lg(PGLg) contains no representations with motivic
weights 5,7,9,13, thus we are unable to find three different w(m;). If m; ~ m; for some 1, j,
then m; ® m; has two zero weights, which is a contradiction!

Type (3): By the same argument for type (2), ¥)o can not be of this type.

Type (4): Denote the Hodge weights of 7 € HSE;(PGLLL) by w; > wy. By a similar
argument for type (2), we can see that wy,ws € {5,7,9,11,13,25}. Via the help of | ,
Table 5], we have wy; = 25 and wy € {5,7,9}, thus w(7) must be 11. Since (w; + wy)/2 has
to be an eigenvalue of ¢ (7 ), the smaller Hodge weight wy can only be 7.

Now we use Arthur’s multiplicity formula. In this case
6 114 6 114
H(vo) = (AP x AP x 8p(2)) /1,
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and by §4.6.6 the global component group Cy, ~ Z/2Z x Z/2Z. We take a set of generators
{oc =(1,1,-1),01 = (—1,1,1)} of Cy,. The restriction of the adjoint representation f, of F4
along 1)y is isomorphic to

Sym? 7 @ (A1 ® 7[2]) ® (1 ® 7) © 7[2] ® Sym? 7 @ [3].
By Proposition 5.6.4 we have:
epo(0) = e(m) = e(I7) - e(Iys) = —1.

On the other side p; = 36 comes from 7 ® 7 and g = 24 comes from 7[2]. The element
o acts on 7 ® 7 and 7[2] both by —1, thus p; (¢) = 1 by Proposition 6.2.1. By Arthur’s
multiplicity formula, the corresponding representation has multiplicity 0 in Lgisc(F4).

Type (5): Denote the Hodge weights of m € Hjlz“ (PGL4) by wy > wy, and assume that
w(71) > w(7y). Since 36 > w; + w(m) > wy + 15, we have wy < 21, thus (wy, we) = (19,7)
or (21,5),(21,9), (21,13) by | , Table 5]. We also need (w; +wy)/2 to be eigenvalues of
Coo(T0), 8O (wy,wy) = (19,7). However, the equalities 36 = w; + w(71) and 32 = w; + w(7)
imply that w(m) = 17, w(72) = 13, which contradicts with the non-existence of representa-
tions in I (PGLy) with Hodge weight 13.

alg

Type (6): Denote the Hodge weights of m € HSIZG(PGLG) by w; > wy > ws. We have
three pairs of consecutive integers wTﬂ in the eigenvalues of ¢, (), thus for i = 1,2,3 we
have w; € {5,7,9,11,13,25}. By | , Table 6], (wq, wq, w3) must be (25,13,7). However,
A*m has 38 as its weight, which is a contradiction.

Type (7): Denote the Hodge weights of m € HS{?(PGLG) by w; > wy > ws. Since
36 > wy + w(T) > wy + 11, we have 23 < w; < 25. Combining 36 > w; + we with | ,
Table 6], we get (wy,ws, w3) = (23,13,5). However, w(7) = 32 — w; = 9 < 11, which is a
contradiction.

Type (8): Denote the Hodge weights of 7 € Hsgs(PGLg) by wy > wy > ws > wy. The

al
multiset
iwl :]:’UJg:i:U)g:l:’U);l

4

coincides with the multiset of eigenvalues of ¢, (). The solutions to this system of equations
are

{xw1/2, £ws/2, Tws/2, £w,/2,

,0,0}

(wr, wa, w3, wy) = (26,24, 18,4), (32,18, 12, 10), (36, 14, 8, 6).

By the method of Chenevier-Taibi in | |, there are no representations in HSES(PGLS)
with these Hodge weights.
Type (9): By the same argument for type (9), we get the Hodge weights of 7 €

I (PGLy):
(wl, W, W3, U)4) = (26, 24, 18, 4), (32, 18, 12, 10), (36, 14, 8, 6)
Again by the method in | ], there are no representations in Hi& (PGLgy) with these

Hodge weights.

In conclusion, the discrete global Arthur parameter 1 is a stable and tempered parame-
ter, i.e. H(¢9) = F4. Composing this ¢y with the 26-dimensional irreducible representation
ro ﬁ(@) — SLo(C), we get an irreducible 26-dimensional representation of £z, and its
corresponding cuspidal representation of PGLgg is the desired one. O
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For each dominant weight A of F,, we define W, (F,) to be the set
{p € Upy(Fy) |7y € Haise(Fa) and (mp)oo = Vi)

In Table 9 and Table 10, we list the elements of W, (F,) for weights A such that w(\) < 36
and U, (F,) # (), where we use the following notations:

Notation 6.4.4. For a representation 7 in Hifgn(PGLz”), n = 1,2,3 with Hodge weights
wy > we > -+ > w,, we denote it by Ay, .. If there are & > 1 equivalence classes

n

-----

meaning that in this case we have k different choices of cuspidal representations. Similarly,
for k different representations 7 in H§g9<PGL9) or Hgé(PGLﬁ with Hodge weights w; >

-+ > wy, where n = 3 or 4, we denote them by Ag?,...,wn,o and omit the superscript when
k =1, i.e. the cuspidal representation with these Hodge weights is unique up to equivalence.

6.5 Some related problems

In this subsection we explain some representation-theoretic problems motivated by our
conjectural classification of discrete global Arthur parameters for Fy.

6.5.1 Theta correspondence between PGL; and F,

Inside an exceptional group E7 3 of Lie type E; and Q-rank 3, which is split over every
finite prime p, there is a reductive dual pair PGLy xFy4, so we have an exceptional theta
correspondence between representations of PGLy and Fy.

For a level one cuspidal automorphic representation 7 € Hjlg(PGLQ), by Savin’s work on
this exceptional theta correspondence | ], if the theta lift ©(7) of 7 to Fy is nonzero, then
its corresponding discrete global Arthur parameter is ¢ = 7[6]®[9]®[5]. By Proposition 6.3.6,
we see that m(m,) is always 1, admitting Arthur’s conjectures. This predicts that the global
theta lift ©(7) is nonzero for any 7 € II;j,(PGLy), and we will prove this result in another
paper in progress.

Remark 6.5.1. For 7 € Hjlg(PGLQ), the archimedean theta lift of 7., is isomorphic to the

irreducible representation V,,., of Fy for some n. For readers interested in this exceptional

theta correspondence, we list in Table 7 the dimensions of VZ;L(Z) and VZ;}E(Z) for n < 40.

6.5.2 Theta correspondence between G, and F,

Inside an exceptional group Eg4 of Lie type Eg and Q-rank 4, there is a reductive dual
pair Gy X Fy, where Gy is the generic fiber of the split Chevalley group of Lie type Gs.

In | ], Dalal classifies level one quaternionic discrete automorphic representations
of Gy. The exceptional theta correspondence from Go to Fy is functorial, so for a level
one quaternionic discrete automorphic representation of Go, if its global theta lift to Fy
is nonzero, then we can describe the corresponding discrete global Arthur parameters in
Uaj(Fy). The discrete global Arthur parameters of F4 involving in this correspondence are:

o Sym?’7[3] @ 7[4] @ 7[2] @ [5], m € 1L}, (PGLy),

alg
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o« Sym?m[3] @ (m @ my3]) & [5], where 1,7y € 1L, (PGLy) satisfy w(my) = 3w(m) + 2,
o and 7[3] @ [5], where 7 € I$2(PGL,).

alg
According to Proposition 6.3.7, Proposition 6.3.10 and Proposition 6.3.13, for every 1) among
these discrete global Arthur parameters, we have m(m,) = 1. This predicts that the global
theta lift of any level one quaternionic discrete automorphic representation of Go to Fy is
nonzero, which is proved by Pollack in | , §8.

Remark 6.5.2. For any quaternionic discrete series 7 of G(R), the archimedean theta lift of 7

is isomorphic to the irreducible representation V,,, of Fy for some n. For readers interested

in this exceptional theta correspondence, we list in Table 8 the dimensions of vi;;,g(z) and

Vi@ for < 30,
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Figure 1: The gram matrix of (Jz, (, )g) in the basis B given in (2.6)
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Figure 2: Generators oy and o9 of F4(Z) as 27 x 27 matrices in the basis B of Jz
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s o(cs) i(cs) s o(cs) i(cs) s o(cs) i(cs)
(1,0,000) | 1 |(27.351,2925,52) || (2,1,1,0,1) | 9 (3,3,0,1) (44.20,1) | 20 | (4,3-8,0)
(0,0,0,0,1) | 2 (-5-1,45,20) | (0,1,0,1,2) | 10 (-2,1,0,6) (7.0,1,1,3) | 20 | (4,9,16,4)
(0,1,0,0,0) | 2 (3-9-35-4) | (0,2,0,1,1) | 10 (0-1,0,0) (2,1,3,1,2) | 21 | (0,0,20)
(0,0,1,00) | 3 (0,0,9,-2) (4,2,0,0,1) | 10 | (10,49,160,10) | (4,212.1) | 21 | (2,1,-1,0)
(1,0,00,1) | 3 (0,0,9,7) 0,0,0,14) | 12 | (402115 || (0401,6) | 24 | (2,037
(1,1,0,0,0) | 3 9,36,90,7) || (01,020 ] 12 | (12-21) (06,0,1,4) | 24 | (0-2-1,1)
(0,0,0,1,0) | 4 (-1,3-3,0) (02,0,1,2) | 12 (-1,0,0,3) (12321) | 24 | (0,03-1)
(0,1,00,1) | 4 (-1-1,1,4) 04,0,1,0) | 12 | (2-6-15-3) || (2421,2) | 24 | (1-2-2-1)
(1,0,1,0,0) | 4 (3,3,1,0) (1,0,3,0,1) | 12 (0,0,5,-1) (3,1,3,1,3) | 24 | (0,0,1,1)
(2,0,00,1) | 4 (727,778) || (1,100 | 12 (0,0,1,0) 351,1,2) | 24 | (2-2-7-1)
(21,0000 | 4 | (15111,54520) | (1,3,1,00) | 12 | @-4-11-2) | 40215 | 24 | (1,0,2,5)
(1,1,0,01) | 5 (2,1,0,2) (14.1,00) | 12 | (3-6-26-3) || (42213) | 24 | (1,00,
(0,0,0,1,1) | 6 (-2,2,-3,5) (2,00,1,3) | 12 | (-205.8) (424,1,0) | 24 | (2.0-1-1)
(0,1,0,02) | 6 (-3,0,10,11) || (2,0,2,1,0) | 12 (1,0.2,-1) (62,031) | 24 | (34,21
(0,1,0,1,0) | 6 (0,0,1,-1) (2,1,0,1,2) | 12 (0,0,1,3) (6,24,01) | 24 | (463.1)
(0,2,0,0,1) | 6 (1,-4,-6,-1) (2.2,0,1,1) | 12 (2,0,-3,0) (7.21,1,3) | 24 | (4,811,3)
(1,0,1,0,1) | 6 (0,0,1,2) (24,00,1) | 12 | (4,0-19-1) | (24214) | 28 | (0-1,0,1)
(1,1,1,00) | 6 (3,0,-8,-1) (3.0,1,1,1) | 12 (2,2,1,1) (34,1,31) | 28 | (1,-1-1-1)
(2,0,0,1,0) | 6 (4,8,9,2) (3,3,1,0,0) | 12 (6,12,5,2) (24,6,0,1) | 30 | (1-21-2)
(21,00,1) | 6 (6,18,37,5) | (4,0201) | 12 | (512183) | (36.1.14) | 30 | (1-2-3,0)
(3,0.1,0,0) | 6 | (1272,28014) | (4,1,003) | 12 | (3.6,14,5) (6,1,051) | 30 | (1,1,0,0)
(4,0,001) | 6 | (16,128,681,23) || (501,1,00| 12 | (832857 | (6.4221) | 30 | (32-3.0)
(4.1,0,00) | 6 | (21,216,1450,35) || (6,1,0,0,2) | 12 | (11,62,238,13) || (8,0.2.1,6) | 30 | (1.1,4,4)
(1,0,0,1,1) | 7 (-1,1,-1,3) (2,1,1,1,1) | 13 (1,0,0,0) (12,1,0,3.2) | 30 | (7,25,60.6)
(2,1,1,00) | 7 (6,15,20,3) (2.22,0,1) | 14 | (2-1-4-1) (14,34,1) | 36 | (0,0,2,-1)
(0,0012) | 8 (-31,510) | (41,012)] 14 (3,5,7.,3) (28214) | 36 | (1-3,-4,-1)
0,1,0,1,1) | 8 (-1,1-1,2) (1.0212) | 15 (-1,1,0,2) (4.62.1,7) | 40 | (0-1,0,2)
(02,0,1,0) | 8 (1-3-3-2) || (42100 15 | (51092 (826,1,3) | 40 | (21,00
(1,1,1,0,1) | 8 (1,-1-1,0) (1,1,3,1,1) | 18 (0,0,4,-1) (1,6,515) | 42 | (0-1,1,0)
(1,2,1,00) | 8 (3-3-17-2) | (22211)| 18 | (1-1,0-1) | (1024,1,6) | 42 | (2.2.22)
(2,00,1,1) | 8 (1,1,1.2) (4,1,0,14) | 18 (0,0,4,5) (1,12,7.2,3) | 60 | (1,-3-2-2)
(22,0,0,1) | 8 (5,9,5,2) 62201) | 18 | (7.23485) || (6.4,6,1,12) | 60 | (-1,0,1,4)
(3,1,1,0,0) | 8 (9,39,111,8) || 242100 20 | (2-3-8-2) | (10,2,10,1,6) | 60 | (1,0,1,0)
(1,1,01,1) | 9 (0,0,0,1) (3.0,1,3,1) | 20 0,1,00) || 11,12,1.35) | 60 | (3.1-6,0)

Table 4: Kac coordinates, Orders and invariants i (defined in §3.5) of the rational torsion
conjugacy classes of Fy
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Table 5:

s ni(s) na(s) s ni(s) na(s)
(1,0,0,0,0) 1 1 (1,1,1,1,1) | 435456000 | 105670656
(0,0,0,0,1) 723 819 (1,3,1,0,1) | 101606400 0
(0,1,0,0,0) | 459900 | 68796 | (2,0,0,1,3) | 1612800 0
(0,0,1,0,0) | 6540800 2283008 (2,0,2,1,0) | 24192000 | 13208832
(1,0,0,0,1) | 121920 | 139776 || (2,1,0,1,2) | 43545600 0
(1,1,0,0,0) 268800 34944 (2,2,0,1,1) | 14515200 | 17611776
(0,0,0,1,0) | 249480 | 137592 || (2.4,0,0,1) | 4112640 0
(0,1,0,0,1) | 2835000 0 (3,0,1,1,1) 7257600 0
(1,0,1,0,0) | 14968800 | 3302208 (3,3,1,0,0) 4838400 0
(2,0,0,0,1) | 23400 58968 || (4,0,2,0,1) | 14515200 | 4402944
(2,1,0,0,0) | 37800 0 (5,0,1,1,0) | 3628800 0
(1,1,0,0,1) | 1741824 0 (2,1,1,1,1) 0 AST71072
(0,0,0,1,1) 497280 0 (2,2,2,0,1) | 223948800 | 11321856
(0,1,0,1,0) | 44150400 | 8805888 || (4,2,1,1,0) | 34836480 0
(0,2,0,0,1) | 10483200 | 2201472 | (1,1,3,1,1) | 232243200 0
(1,0,1,0,1) | 74995200 | 17611776 || (2,2,2,1,1) | 154828800 | 105670656
(1,1,1,0,0) | 67737600 | 8805888 | (6,2,2,0,1) | 19353600 0
(2,0,0,1,0) | 1881600 2935296 (2,4,2,1,0) | 87091200 0
(2,1,0,0,1) 604800 0 (4,4,2,0,1) | 52254720 0
(3,0,1,0,0) 806400 0 (2,1,3,1,2) | 199065600 | 30191616
(4,000,1) | 6720 0 (4,2,1,2,1) 0 60383232
(1,0,0,1,1) 0 4313088 || (0,4,0,1,6) | 7257600 0
(2,1,1,0,0) | 24883200 | 539136 (0,6,0,1,4) | 21772800 0
(0,0,0,1,2) | 272160 0 (1,2,3,2,1) | 174182400 0
(0,1,0,1,1) | 10886400 0 (2,4,2,1,2) | 174182400 | 52835328
(0,2,0,1,0) | 22680000 | 6604416 | (3,1,3,1,3) | 261273600 0
(1,1,1,0,1) | 342921600 0 (3,5,1,1,2) | 87091200 0
(1,2,1,0,0) | 32659200 0 (4,2,2,1,3) | 58060800 | 52835328
(2,0,0,1,1) | 5443200 | 6604416 || (4,2,4,1,0) | 65318400 0
(2,2,0,0,1) | 5715360 0 (6,2,4,0,1) | 50803200 0
(3,1,1,0,0) | 5443200 0 (2,4,2,1,4) | 149299200 | 22643712
(1,1,0,1,1) | 77414400 0 (2,4,6,0,1) | 34836480 0
(2,1,1,0,1) | 19353600 | 35223552 || (6,4,2,2,1) | 139345920 0
(0,2,0,1,1) | 38320128 0 (2,8,2,1,4) | 116121600 0
(4,2,0,0,1) | 1741824 0 (4,6,2,1,7) | 104509440 0
(0,2,0,1,2) | 29030400 | 8805888 || (8,2,6,1,3) | 104509440 0
(0,4,0,1,0) | 10886400 0 (6,4,6,1,12) | 69672960 0
(1,0,3,0,1) | 47174400 0

Kac coordinates of the conjugacy classes of F4 whose intersections with F,1(Z) and

F1r(Z) are not both empty
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n | di(n) | de(n) || n | di(n) | da(n) || n | di(n) | do(n) || n | di(n) | da(n)
1 0 0 11 4 1 21 83 209 31 | 4112 24425
2 1 0 12 8 ) 22 | 130 413 32 | 6294 38234
3 1 0 13 6 2 23 | 169 290 33 | 8904 54760
4 1 0 141 12 8 24 | 280 1138 || 34 | 13284 | 82989
) 1 0 15 13 8 25 | 368 1629 || 35 | 18664 | 117447
6 2 1 16 | 20 18 26 | 601 | 2915 || 36 | 27332 | 173760
7 1 0 171 22 22 27| 835 | 4253 | 37 | 38024 | 242971
8 3 1 181 37 o8 28 | 1323 | 7161 || 38 | 54627 | 351485
9 3 1 191 39 63 29 | 1868 | 10455 || 39 | 75354 | 486013
10 4 1 20 | 67 150 || 30 | 2919 | 16962 || 40 | 106332 | 689219

Table 7: Dimensions d;(n) = dim Vart®) and dz(n) = dim Vore® for n < 40

n | di(n) da(n) n dy(n) dy(n)

1 0 0 16 699558 4607562

2 1 0 17 1899450 12528178

3 0 0 18 4951537 32636950

4 1 1 19 12298529 81088431

) 0 1 20 29444006 194120684
6 4 7 21 67821302 447181025
7 2 14 22 | 151304284 997568542
8 32 136 23 | 326873722 2155210696
9 84 583 24 | 686811782 4528418428
10 497 2936 25 | 1404333622 9259307898
11| 1765 11764 26 | 2802604042 | 18478677233
12| 7111 46299 27 | 5463354204 | 36021961176
13 | 24173 | 159701 || 28 | 10425639768 | 68740584631
14 | 80166 | 526081 || 29 | 19491910968 | 128517811865
15 | 241776 | 1594526 || 30 | 35762551274 | 235797459916

Far

Table 8: Dimensions d;(n) = dim Vori® and da(n) = dim Vi, @ for n < 30
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w(A) A dim Ay, (F4) Uy\(Fy)
16 | (0,0,0,0) 2 Ol & 17
Ay (6] @ [5] @ [9]
20 | (0,0,0,2) 1 Ay516] @ [5] @ [9]
22 | (0,0,0,3) 1 Ay7[6] @ [5] & [9]
o (0,0,0,4) 1 Ayo[6] @ [5] & [9]
(0,0,2,0) 1 Sym*= Ay [3] © A [4] © A [2] @ [5]
26 (0,0,0,5) 1 A1 [6] @ [5] @ [9]
(0,0,1,3) 1 Ass1650[3] ® [5]
0006 | 3 A6 @ 5] @ [9]
28 Ag6.20,6,0[3] D [5]
(0,0,2,2) 1 Ase,16,10,0[3] @ [5]
(0,0,0,7) 1 Ags[6] @ [5] @ [9]
30 | (0,0,1,5) 1 Ass 20,80[3] @ [5]
(0,0,2,3) 1 A28 18,10,0(3] @ [5]
0.008) A 6l 5] @ [9]
Aé%%24,6,0[31 ® [5]
2 (0,0,1,6) 1 Asz0,22,80[3] ® [5]
(0,0,2,4) 1 As0,20,10,0[3] @ [5]
(0,0.4,0) 5 Sym® A5[3] & Ays[4] @ Ays[2] @ [5]
A30 16,14,0(3] @ [5]
0.0.09) A $i6) @ [5] @ [9]
Aééi%,G,o[?)] & [5]
(0,0,1,7) 2 Afa5.03) @ [5]
(0,0,2,5) 1 As22100[3] ® [5]
341 (0033) 2 A 20,12,0[3] © 5]
(0,1,3,0) 1 Asy.16,14,6,0 D Spin Asg 16,14,60 D [1]
(0,3,0,0) 1 Sym?® Ay1[2] @ Sym? A1 [3] © A [4] @ [1]
(17170,4) 1 A30,20,10,8,0 & Spin A30,20,10,8,U > [1]
(3,1,0,0) 1 N A7 @ (Arg7 @ Ays) ® Argr[2] © Ags[2] S [1]

Table 9: Elements of nonempty Wy (F,) for the weights A\ such that w(\) < 34
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A dim Ay, (Fy) Uy (Fy)
0.00.10) i Agl6) @ [5] @ [9)
Asiassol3) © [5]
(0.0.1.8) A N Do9113 B (Ao113 ® A1s) B (Ao113 @ A11) B (A5 ® Aqq) & [1]
Agias 03] © [9

(0.0.26) : A 24,1003 © [5]

A34.2410,4,0 D SPin Agy 241040 D [1]
00Ls) , A 20,1403 @ [9

A34,20,14,4,0 @ Spin A32,20,14,4,0 S¥ [1]
(0,0,5,0) 1 Sym® Aq7[3] @ A7 [4] @ Arr[2] & [5)
(0,1,1,5) 1 As4.92,10,6,0 ® Spin Asy 92 10,6,0 D [1]
(0,1,3,1) 1 Asa18,14,6,0 ® Spin Asy 151460 D [1]
(0,2,0,4) 1 As4.20,10,8,0 ® Spin Ass 16,1460 D [1]
(0,2,2,0) 1 N Do113 © (A21,13 ® Ags) © Ao 3[2] © As[2] @ [1]
(1,0,0,8) 1 A32.96.86,0 @ Spin Agz 96560 D [1]
(1,0,1,6) 1 As9.94,10,6,0 D Spin Ass 410,60 D [1]
(1,0,2,4) 1 A32.9212,6,0 D Spin Az 22,1260 D [1]
(1,0,3,2) 1 As39.20,14,6,0 D SPin Agz 20,1460 D [1]
(1,2,0,2) 1 Uy
(2,0,0,6) 2 Ag%)),24,10,8,0 @ Spin Asg 24,1080 © [1]
(2,0,2,2) 1 As0,20,14,8,0 D Spin Agg 20,14,8,0 D [1]
(2,2,0,0) 1 N D19 @ (Ao19 ® Ars) D Ao 9[2] D Ays[2] @ [1]

Table 10: Elements of nonempty W, (F,) for the weights A such that w(\) = 36
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Fy(N) A Fy(A) A Fy(N) A Fy(N) A
11220 | 5 | (1132 | 22 || 0135 | 70 | (2026)

2 | (2024 | 2 || 1,140 | 11 | 0143) | 68 | (2,034)
12032 | 2 | 1205 | 7 | 0151 | 49 | (204.2)

2> | @113 | 3 || 1213) | 22 | 0208 | 31 | (2050

2 2120 | 2 || 12210 | 13 | (0216 | 61 | (21,07

1 [ 2202 | 4 | 1302 | 12 || 0224 | 92 | (21,15

1 3006 | 1 | 1310 | 2 | 0232) | 74 | (2123)

2 3022 | 2 | @o1n) | 2 | (02400 | 35 || (2131

2 || (32,00) | 1 || (20.25) | 3 | (03.05) | 26 | (22,04)

2 || (0037 | 3 || (2033) | 9 | (0313) | 61 | (22,12)

1| 0045 | 6 | 2041) | 5 | (0321) | 40 | (2.2.2,0)

1 0053) | 8 | 21.06) | 11 || (0402) | 28 | (23.0.1)

1 0061 | 4 | @114 | 9 || (041,00 | 8 | (3008

1 [01,0100] 2 | @122 | 21 | 1,0012)] 1 | (30,1,6)

1 01,18 | 6 | 2130 | 2 || 1,0,1,100| 4 | (3024)

1 0126 | 19 | 2203 | 1 | 1,028 | 23 | 3.032)

3| (01,34) | 18 || 2210 | 8 | (1L036) | 36 | (3,040)

6 || (0142 | 25 || (23.00) | 4 | (L044) | 50 | (3,1,05)
2 || (0150) | 4 || 3015 | 2 | (1L052) | 34 | (3.1,13)
4 | (0207 3023) | 2 | (1,060 | 24 [ (3121
4| 0215 | 20 || 3.031) | 3 | (1L,1,09) | 6 | (3202
8 | (0223 | 21 || 3.1,04) | 4 || 117 | 50 | (3210 2
2 | (0230 | 19 | 3112 | 5 | 1,1,25 | 69 | (4006)| 2
31 (0304) | 19 || 31200 | 3 | (1,133) | 8 | (4.014)] 3
2 || (03.12) | 10 || 41,02) | 3 | (1141 | 57 | (4022 | 7
1| (0320 | 13 | (002100 4 | (1,20,6) | 56 | (4030) | 1
2 | (0,4,0,1) 0038) | 13 | (1214) | 72 || @111 6
2 | (1,027 0,046) | 27 | (1,222) | 93 || (4.2,00) 1
4| (1,035) | 11 || (0,054) | 26 | (12300 | 17 | (5.0,04) ] 2
4| (1,043) | 9 || (0,062 | 24 | (13.03) | 18 | (5.020)] 2
4| (1050 | 11 || 00700 | 8 || (1311 | 34 | (7.000) | 1
6 || (LLOS) | 7 || (01,011 | 1 | (1400) | 9

7 I (LLL6) | 15 | (01,19 | 21 | (200.10)| 3

3| (L124) | 27 || (0127 | 44 | (2018 | 9

Table 11: The nonzero F4(\) for the weights A such that w(\) < 44
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