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Abstract

Up to isomorphism, there is a unique connected semisimple algebraic group over Q
of Lie type F4, with compact real points and split over Qp for all primes p. Let F4 be
such a group. In this paper, we study the level one automorphic representations of F4

in the spirit of the work of Chenevier, Renard and Taïbi [CR15; Taï17; CT20].
First, we give an explicit formula for the number of these representations having

any given archimedean component. For this, we study the automorphism group of
the two definite exceptional Jordan algebras of rank 27 over Z studied by Gross in
[Gro96], as well as the dimension of the invariants of these groups in all irreducible
representations of F4(R).

Then, assuming standard conjectures by Arthur and Langlands for F4 [Art89;
CL19], we refine this counting by studying the contribution of the representations
whose global Arthur parameter has any possible image (or “Sato-Tate group”). This
includes a detailed description of all those images, as well as precise statements for the
Arthur’s multiplicity formula in each case. As a consequence, we obtain a conjectural
but explicit formula for the number of algebraic, cuspidal, level one automorphic rep-
resentation of GL26 over Q with Sato-Tate group F4(R) of any given weight (assumed
“F4-regular”). The first example of such representations occurs in motivic weight 36.
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1 Introduction
1.1 Galois representations with given image

The absolute Galois group Gal(Q/Q) encodes a lot of arithmetic information about
number fields, and a natural way to study Gal(Q/Q) is to consider its representations,
especially those arising from algebraic geometry. Motivated by the inverse Galois problem,
the following question has been studied by a lot of mathematicians:

Question 1. Let ` be a prime number and H a connected reductive algebraic group over Qℓ.
Is there an `-adic Galois representation ρ : Gal(Q/Q) → H(Qℓ) such that it is semisimple
and geometric (in the sense of Fontaine-Mazur [Tay04, Conjecture 1.1]), and its image is
Zariski dense in H(Qℓ)?

In the case H = GL2 ' GSp2 or GSp4, or more generally, a (similitude) classical group,
there are many well-known constructions and examples. For instance, one can use the
Poincaré pairing on `-adic cohomologies of algebraic varieties to construct Galois represen-
tations with images in classical groups. The case of exceptional groups, i.e. groups with Lie
types G2, F4, E6, E7 and E8, is harder, but we still have some examples in [DR10; GS98;
Yun14; Pat16; BCELMP19]. Notice that when H has Lie type G2 or E8, this question is
related to Serre’s question on motives [Ser94, Question 8.8, §1].

Composing Gal(Q/Q) → H(Qℓ) with an irreducible faithful algebraic representation
H ↪→ GLn, we obtain an n-dimensional geometric `-adic representation. One can associate
two invariants with a geometric `-adic Galois representation ρ : Gal(Q/Q) → GLn(Qℓ): the
(Artin) conductor N(ρ) ∈ N, and the Hodge-Tate weights HT(ρ), a multiset of n integers (see,
for example, [Tay04]). In the aforementioned works, the conductors of the geometric `-adic
representations that they construct are usually not controlled. One may refine Question 1
naturally by fixing these two invariants:

Question 2. Let ` be a prime number, n ≥ 1 and H a connected reductive subgroup of GLn
over Qℓ. What is the number (up to equivalence) of geometric `-adic Galois representations
ρ : Gal(Q/Q) → GLn(Qℓ) of given conductor and Hodge-Tate weights such that the Zariski
closure of Im(ρ) is H(Qℓ)?

For (H,n) = (GL2, 2) or (SO2g+1, 2g + 1), this question is for instance related to the
dimension of spaces of classical or Siegel modular forms. We have less knowledge of the
cases of other groups H. When the conductor N = 1, Question 2 is solved conjecturally by
Chenevier and Renard in [CR15] for the following groups (n is chosen to be the dimension
of the standard representation when H is a (similitude) classical group, and to be 7 when H
has type G2):

GL2 ' GSp2, GSp4, SO4, SO5, GSp6, GSp8, SO8, G2,

via the conjectural connection between n-dimensional geometric `-adic representations and
cuspidal automorphic representations of GLn. See also [Taï17; CT20] for higher dimensions.
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In [Lac20], Lachaussée extends the results for GSp2g, 1 ≤ g ≤ 4 to the case of Artin conductor
N = 2. Now we concentrate on the case of conductor one (see Remark 1.6.4 for more
explanations about this conductor one assumption).

In this paper, following [CR15], we give a conjectural solution to Question 2 when N = 1,
H has Lie type F4, and n = 26. For a 26-dimensional geometric `-adic Galois representation
ρ such that Im(ρ) has type F4, its multiset of Hodge-Tate weights only depends on 4 variables
a, b, c, d ∈ N, and has the form

HT(a, b, c, d) :=

{
0, 0,±a,±b,±(a+ b),±(b+ c),±(a+ b+ c),±(b+ c+ d),±(a+ b+ c+ d),±(a+ 2b+ c),

±(a+ 2b+ c+ d),±(a+ 2b+ 2c+ d),±(a+ 3b+ 2c+ d),±(2a+ 3b+ 2c+ d).

}

As a conjectural corollary of our results in this paper, we propose the following conjecture
on F4-type geometric `-adic representations:

Conjecture A. The number of equivalence classes of 26-dimensional conductor one geo-
metric `-adic Galois representations ρ such that

• the Zariski closure of Im(ρ) is a connected reductive group of type F4,
• and HT(ρ) = HT(a, b, c, d), a, b, c, d ≥ 1,

is F4(a − 1, b − 1, c − 1, d − 1), where F4(λ) is the computable function on N4 given by
Proposition 6.4.1.

Remark 1.1.1. The formula for F4(λ) has so many terms that we will not write down the full
formula in this paper. However, under some hypothesis this formula becomes much simpler.
For instance, when a > b + c + d + 3, b, c, d > 0 and c, d are both odd, a short formula for
F4(a, b, c, d) is given in Remark 6.4.2.
Example 1.1.2. Among quadruples (a, b, c, d) with nonzero F4(a, b, c, d), there exists a unique
one (1, 2, 0, 2) that has the smallest 2a+3b+2c+d (the largest Hodge-Tate weight). Moreover,
F4(1, 2, 0, 2) = 1, so according to Conjecture A there should be a unique 26-dimensional
conductor one geometric `-adic representation ρ such that

• Im(ρ) has type F4,
• and its multiset of Hodge-Tate weights HT(ρ) is:

HT(2, 3, 1, 3) = {0, 0,±2,±3,±4,±5,±6,±7,±9,±9,±12,±13,±16,±18}.

For people preferring non-negative Hodge-Tate weights, one can twist ρ by ω−18
ℓ , where

ωℓ denotes the `-adic cyclotomic character of Gal(Q/Q), and obtain a representation with
motivic weight 36. Hence we expect a 26-dimensional geometric `-adic representation whose
Zariski image is the product of an F4-type group with Qℓ

× to appear in the 36th degree
`-adic cohomology of some algebraic variety. A very interesting open problem is to find such
a variety!

1.2 An automorphic variant of Question 2
Now we send Question 2 to the automorphic side. Let G be a connected reductive group

over Q with a reductive Z-model (see §2.2). As we will talk about Galois representations,
it will be convenient to assume that Ĝ is defined over Q, and we fix two embeddings:
ι∞ : Q → C and ιℓ : Q ↪→ Qℓ. We also fix a maximal compact subgroup Gc of Ĝ(C).
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Let π be an L-algebraic 1 level one automorphic representation of G. By a conjecture
of Buzzard and Gee [BG14, Conjecture 3.2.1], one should be able to associate with π a
compatible conductor one geometric `-adic representation ρπ,ι : Gal(Q/Q) → Ĝ(Qℓ), which
depends on the choice of embeddings ι = (ι∞, ιℓ). By the standard conjectures of Fontaine-
Mazur and Langlands, every conductor one geometric `-adic representation into Ĝ(Qℓ) should
arise in this way. If any two element-conjugate homomorphisms from a connected compact
Lie group into Gc are conjugate (see §4.1 for a detailed explanation), the following question
gives an automorphic variant of Question 2 for H = Ĝ×ιℓ Qℓ:

Question 3. Let G be a connected reductive group over Q admitting a reductive Z-model.
(1) (Counting) Count the number (up to equivalence) of level one algebraic 2 discrete

automorphic representations for G with an arbitrary given archimedean component.
(2) (Refinement) Refine this counting by “Sato-Tate groups” of automorphic representa-

tions.

Remark 1.2.1 (“Sato-Tate groups”). In the above question, the “Sato-Tate group” H(π) of
a level one automorphic representation π for G is a certain conjugacy class of subgroups of
Gc that we will explain carefully in §5.3.1, and we can briefly introduce it as follows. Based
on Arthur’s parametrization of automorphic representations, one can conjecturally associate
with π a group homomorphism

ψπ : LZ × SU(2) → Gc,

where LZ is the hypothetical Langlands group, which is connected and compact (see §5.3).
We define H(π) to be the conjugacy class of the image of ψπ in Gc. When the restriction of
ψπ to 1× SU(2) ⊂ LZ × SU(2) is trivial, this notion H(π) coincides with the usual notion of
Sato-Tate groups. In general, we decided to include the SU(2) factor in the definition as it
provides convenience for stating some of our results.

The point of the refinement part in Question 3 is that in general many level one discrete
automorphic representations π for G, for example the endoscopic ones, will have a Sato-Tate
group strictly smaller than Gc. For these π, Im(ρπ,ι) should be a proper subgroup of Ĝ(Qℓ).
Hence we have to find a way to exclude these representations to obtain the desired number
in Question 2.

In [CR15], Chenevier and Renard solve the part (1) of Question 3 for a number of classical
groups of small ranks, namely, G is one of the following groups:

SL2 = Sp2, Sp4, SO2,2, SO3,2, SO7, SO8 and SO9,

and also for a connected semisimple Q-group of type G2 with compact real points. For the
part (2) of Question 3, their method relies in an important way on Arthur’s classification
of automorphic representations [Art89; Art13]. Their results for SO7, SO8, SO9 and G2 are
conditional to Arthur’s conjectures for these groups, since SO7, SO8 and SO9 are not quasi-
split, and G2 is not covered by Arthur’s results. In [Taï17], Taïbi uses Arthur’s L2-Lefschetz

1For the definition of L-algebraicity, see [BG14, Definition 2.3.1]. For a representation which is algebraic
in the sense of Definition 5.4.3 but not L-algebraic, one should replace Ĝ by some “similitude” group.

2One can remove this algebraicity condition by restricting to semisimple Q-groups.
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formula to make these results unconditional (except for G2) and he also extends them to the
following split classical groups:

Sp2g with g ≤ 7, SOn+1,n with n ≤ 8 and SO2m,2m with m ≤ 4.

In particular, Taïbi’s solution to Question 3 for Sp8 will be important in our work.
In this paper, we apply the method of [CR15] to F4, the unique (up to isomorphism)

connected semisimple algebraic group over Q of type F4, with compact real points and split
over Qp for every prime p. The construction of F4 is explicitly given in §2.1. For this
group, automorphic representations are automatically L-algebraic. Moreover, it turns our
that there is no local-global conjugacy problems for connected subgroups of (F4)c = F4(R)
(see Proposition 4.1.5). As a consequence, Conjecture A follows from standard conjectures
and our result on automorphic representations (Theorem F).
Remark 1.2.2. The automorphic representations for F4 (and their local components) have
been studied in [Sav94; MS97; Gan00; Pol23; KS23] via exceptional theta correspondences,
and we will explain some links between these correspondences with our work in §6.5. Let us
mention also that automorphic representations for F4 have also been studied in the past by
Seth Padowitz in [Pad98, §9]. Padowitz rather considers the automorphic representations
which are Steinberg at a fixed non-empty set of primes and unramified elsewhere, and tries
to enumerate them using the stable trace formula, in the spirit of works of Gross-Pollack
[GP05]. The results are only partial, as several stable local orbital integrals there are not
determined 3, and we hope to go back to this question in the future.

1.3 Counting level one automorphic representations
In [Gro96], Gross proves the following result for F4, which is important in our solution

to the part (1) of Question 3 for F4:

Theorem B. (Proposition 2.3.5) Up to Z-isomorphism, there are two smooth affine group
schemes over Z with generic fiber isomorphic to F4, whose special fiber over Z/pZ is reductive
for all primes p.

The Z-group schemes in Theorem B are reductive Z-models of F4. Their constructions
are related to integral structures of the 27-dimensional definite exceptional Jordan algebra
over Q. Gross proves this result via the mass formula for F4 and some results in [ATLAS],
and we will give a new proof in §2.3 without using [ATLAS].

In our proof of Theorem B, we study the Z-points of two reductive Z-models in The-
orem B, which are finite groups inside the compact Lie group F4(R). With the help of
[PARI/GP] and [GAP], for each of these finite groups, we give an explicit set of generators
in §3.2 and enumerate its conjugacy classes in §3.3.

Since the method of counting in [CR15] can be applied to any algebraic Q-group that
has compact real points and admits a reductive Z-model, we recall and apply this method
to F4 in §3.1, §3.4 and §3.5. This formula leads to the answer for the part (1) of Question 3
in the case of F4, which is also the main computational result in this paper:

3Another minor problem is that the author asserts on [Pad98, P.42] that the 26-dimensional irreducible
representation of F4 is “excellent” in his sense, which is not correct. See Remark 3.5.5 for a conterexample.

5



Theorem C. (Theorem 3.6.1 and Corollary 5.1.8) (1) For an irreducible representation Vλ

of F4(R) with highest weight λ, we have an explicit and computable formula for the number
d(λ) of equivalence classes of level one automorphic representations π with π∞ ' Vλ.

(2) For dominant weights λ =
∑4

i=1 λi$i
4 satisfying 2λ1 + 3λ2 + 2λ3 + λ4 ≤ 13, we list

the numbers d(λ) in Table 6, Appendix A.

1.4 Candidates for Sato-Tate groups
The part (2) of Question 3 involves a classification of all possible Sato-Tate groups for

level one automorphic representations of F4. For this Q-group, its Langlands dual group F̂4

is isomorphic to F4 ×Q C, and as mentioned in Remark 1.2.1, Sato-Tate groups in this case
are conjugacy classes of subgroups of the compact Lie group F4(R). The following result
gives us 13 candidates for Sato-Tate groups strictly smaller than F4(R):

Theorem D. (Theorem 4.6.7) There are 13 conjugacy classes of proper connected subgroups
H of F4(R) such that:

• the centralizer of H in F4(R) is isomorphic to the product of finitely many copies of
Z/2Z;

• the zero weight appears twice in the restriction of the 26-dimensional irreducible rep-
resentation of F4(R) to H.

We prove this classification result step by step in §4.3, §4.4, §4.5 and §4.6, following
Dynkin’s strategy in [Dyn57]. It is worth mentioning two important ingredients in the proof:

• A local-global conjugacy result (Proposition 4.1.5) for F4(R), which we have already
mentioned in the end of §1.2. This relies on a result about Lie algebras (Theorem 4.1.3)
proved by Losev in [Los10].

• A useful criterion (Proposition 4.2.1) given in §4.2 for the conjugacy of two homomor-
phisms from a connected compact Lie group into F4(R).

Example 1.4.1. Among the conjugacy classes of subgroups classified in Theorem D, we have

Spin(9), Spin(8), G2 × SO(3), (Sp(3)× SU(2)) /µ∆
2 , (Sp(2)× SU(2)× SU(2)) /µ∆

2 ,

where the notations will be explained in Notation 4.3.1 and Notation 4.3.3. The remaining
subgroups are all centrally isogenous to products of n copies of SU(2), n ≤ 4. Note that
among the subgroups listed above, only Spin(9) and (Sp(3)× SU(2)) /µ∆

2 are maximal proper
connected regular subgroups of F4(R).

1.5 Arthur’s conjectures
As in [CR15], for the part (2) of Question 3, we need some conjectures on automorphic

representations. For a connected reductive algebraic group G over Q, Arthur introduces in
[Art89] a conjectural parametrization of discrete automorphic representations, via discrete

4Here we follow the notations in [Bou07, §IV.4.9].
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global Arthur parameters for G. In the level one case, these parameters are Ĝ(C)-conjugacy
classes of admissible morphisms

ψ : LZ × SL2(C) → Ĝ(C),

where LZ is the hypothetical Langlands group of Z (see §5.3 for more details), and Ĝ is the
Langlands dual group of G. Arthur proposes a conjectural formula for the multiplicity of an
irreducible G(A)-representation in the discrete automorphic spectrum of G, in terms of the
associated global Arthur parameters.

In [Art13], Arthur reformulates his conjectures for any quasi-split classical group G,
avoiding the appearance of the hypothetical Langlands group LZ. In this case, he relates the
global Arthur parameters for G to cuspidal automorphic representations of linear groups,
and proves the endoscopic classifications, relying in particular on the works of Mœglin-
Waldspurger [MW14], Ngô [Ngô10] and many others. We refer to [CL19, §8] for precise
statements of Arthur’s results in [Art13] in the case of level one cohomological automorphic
representations of classical groups.

Of course F4 is not a classical group, and Arthur’s general conjectures [Art89] are still
open in this case. Nevertheless, they can still be formulated quite precisely if we admit the
existence of LZ. See also [CL19, §6.4] for some generalities of Arthur’s conjectures in the
level one case.

Notation 1.5.1. In the rest of this paper, we will mark any result conditional to the existence
of LZ and Arthur’s multiplicity formula (Conjecture 5.6.5) with a star ∗.

Now we briefly explain Arthur’s conjectures for F4. For a level one automorphic represen-
tation π of F4 with global Arthur parameter ψ : LZ × SL2(C) → F4(C), we may compose ψ
with the 26-dimensional irreducible representation r : F4(C) → GL26(C) 5, and thus obtain
a representation of LZ × SL2(C). This representation is decomposed as:

r ◦ ψ ' π1[d1]⊕ · · · ⊕ πk[dk], (?)

where πi is an ni-dimensional irreducible representation of LZ and [di] stands for the ir-
reducible di-dimensional representation of SL2(C), and

∑k
i=1 nidi = 26. We identify πi as

a level one cuspidal representations of PGLni , and observe that it is always self-dual and
algebraic in this case (see §5.4). In a similar way as in [Art13], we view the global Arthur
parameter ψ as a linear combination of πi[di]’s.

In §6.1, we derive from Theorem D that the Sato-Tate group of any πi appearing in the
decomposition (?) is one of the following compact Lie groups:

SU(2), Sp(2), Sp(3), SO(8), SO(9), G2,F4(R). (??)

Cuspidal representations with Sato-Tate group F4(R) conjecturally correspond to the desired
`-adic representations in Question 2, and those with other Sato-Tate groups in (??) are related
to level one automorphic representations for the following Q-groups:

PGL2, SO3,2, SO7, SO8, Sp8,G2,

5The image of r is even inside SO26(C) ⊂ SL26(C) ⊂ GL26(C).
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which have already been studied in [CR15; Taï17; CT20].
Conversely, for a global Arthur parameter ψ : LZ×SL2(C) → F4(C) whose “archimedean

component” is an Adams-Johnson parameter (see Definition 5.6.1 and Remark 5.6.2), the
multiplicity of its corresponding irreducible F4(A)-representation π in the automorphic spec-
trum can be calculated via Arthur’s formula in [Art89]. In the level one case, this formula
involves two characters on the centralizer Cψ of Im(ψ) in F4(C), which is an elementary
abelian 2-group. The first character is Arthur’s character εψ, and we will recall its definition
in §5.6.2. The second character is a local character at the archimedean place, an explicit
formula for which will be given in §6.2.

1.6 Refinement of the counting
With all these preparations, we are ready to refine the counting in Theorem C. For a

global Arthur parameter ψ : LZ × SL2(C) → F4(C), one can associate two invariants:
• its Sato-Tate group H(ψ) := ψ(LZ × SU(2)), viewed as a conjugacy of subgroups in

the compact group F4(R);
• its “weights”, i.e. eigenvalues of its infinitesimal character under the 26-dimensional

irreducible representation r : F4 → SL26.
Given any conjugacy class of proper subgroups H of F4(R) classified in Theorem D, in
§6.3 we classify all the possible decompositions (?) of r ◦ ψ for global Arthur parameters ψ
with H(ψ) = H. If ψ corresponds to an irreducible level one F4(A)-representation π, an
important part of our work is to give an exact formula for the multiplicity of π, for each case
of Sato-Tate groups. Roughly speaking, the multiplicity depends on how the weights of ψ
are distributed in the summands πi[di]’s of (?). In conclusion, we have the following result:

Theorem∗ E. (Theorem 6.3.1)
(a) The Sato-Tate group of a level one automorphic representation for F4 is either F4(R)

or one of the proper subgroups of F4(R) classified in Theorem D except Spin(8).
(b) For global Arthur parameters of F4 with a given Sato-Tate group, the multiplicity of

its corresponding irreducible level one F4(A)-representation (0 or 1) is given explicitly
by the formulas in Proposition 6.3.4 to Proposition 6.3.18.

Remark 1.6.1. We observe that not all subgroups in Theorem D come from endoscopic groups
of F4, in the sense of [Art13]. For example, the subgroup G2×SO(3) has trivial centralizer in
F4(R), thus it can not be the centralizer of any element in F4(R). As a result, our conjectural
refinement is finer than Arthur’s endoscopic classification in [Art13].

Given an irreducible representation Vλ of F4(R), from Theorem C we know the number
of equivalence classes of level one automorphic representations π for F4 with π∞ ' Vλ. The
weights of the global Arthur parameter ψπ of π are determined by Vλ. We can enumerate
all the possible global Arthur parameters with these weights, and then use the multiplicity
formulas in Theorem E to determine their multiplicities. In this way, we obtain a conjectural
refinement of the counting in Theorem C.
Example 1.6.2. In Table 9 and Table 10, we list some parameters with “small” archimedean
components. For example, there are two different level one automorphic representations of

8



F4 with trivial archimedean components, whose Arthur parameters are:

[9]⊕ [17] and ∆11[6]⊕ [5]⊕ [9].

The first parameter corresponds to the trivial representation, and its Sato-Tate group 6 is
the principal SU(2) in F4(R). The Sato-Tate group of the second parameter is isomorphic
to (SU(2)× SU(2)) /µ∆

2
7, the information about which can be found in §6.3.2. The Hecke

eigenvalues of its corresponding automorphic representation for F4 are thus related to the
Fourier coefficients of Ramanujan’s ∆ function, i.e. the unique level one classical cuspidal
modular form with weight 11.

As a consequence of Theorem E, we obtain a conjectural solution to Question 2, stated
in terms of automorphic representations:

Theorem∗ F. (Proposition 6.4.1 and Proposition 6.4.3) The number of algebraic, cuspidal,
level one automorphic representations of GL26 over Q satisfying:

• the Sato-Tate group is F4(R),
• and the multiset of weights 8 is HT(a, b, c, d) for a, b, c, d ≥ 1,

is F4(a− 1, b − 1, c − 1, d − 1), where F4(λ) is an explicit function on N4 given by Proposi-
tion 6.4.1.

Example 1.6.3. The quadruples (a, b, c, d) ∈ N4 such that
• the largest weight 2a+ 3b+ 2c+ d+ 8 in the multiset HT(a+ 1, b+ 1, c+ 1, d+ 1) is

not larger than 22,
• and F4(a, b, c, d) 6= 0,

are listed in Table 11, Appendix A. We also list the values of F4(a, b, c, d) for these quadruples.
As a direct consequence, we predict the existence of the geometric `-adic representation in
Example 1.1.2.
Remark 1.6.4. One may want to remove the level one condition, like in [Lac20]. For the
part (1) of Question 3 for F4, one can calculate the dimension of invariants under other
congruence subgroups, and obtain results similar to Theorem C for higher levels. However,
for the part (2) of Question 3 for F4, what we use is a simplified version of Arthur’s recipe
in [Art89]. When allowing ramifications at some finite place p, one needs some properties of
local Arthur packets for F4(Qp), which are still unknown to us.

Let us end the introduction with a short summary of the contents of this paper. In
§2, we recall the definition of F4 and some results of Gross [Gro96] on reductive Z-models
of F4. We also give a new proof for Theorem B. We prove Theorem C in §3. In §4, we
study the subgroups of the compact Lie group F4(R) and prove Theorem D. In §5, we
recall the theory of level one automorphic representations and the conjectures by Arthur

6As we mentioned in Remark 1.2.1, the notion of Sato-Tate groups in the introduction coincides with the
usual notion if and only if the restriction of the global Arthur parameter to SL2(C) is trivial. Here these two
Arthur parameters fail to satisfy this condition.

7Beware that there are many distinct conjugacy classes of subgroups of F4(R) isomorphic to SU(2).
8See §5.4 for the precise definition of weights for an algebraic cuspidal level one automorphic representation

of GLn.
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and Langlands, mainly following [CR15; CL19]. Then we apply these conjectures to F4 and
prove Theorem E and Theorem F in §6.3. In Appendix A, some figures and tables used in
this article are provided.
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2 The compact Lie group F4 and its reductive integral
models

In this section we introduce the compact Lie group of type F4 that we will discuss in this
paper, and give a classification of its reductive Z-models.

2.1 The compact group F4 and its rational structure
To construct Lie groups of exceptional types, we need to recall the notion of octonions,

and our main reference is [Con12, §5].

Definition 2.1.1. An octonion algebra C over a field k is a non-associative k-algebra of k-
dimension 8 with 2-sided identity element e such that there exists a non-degenerate quadratic
form N on C satisfying N(xy) = N(x)N(y), x, y ∈ C. The quadratic form N is referred as
the norm on C.

When considering octonion algebras over R, we have the following classification result:

Proposition 2.1.2. [Ada96, Theorem 15.1] Up to R-algebra isomorphism, there is a unique
octonion algebra OR over R whose norm N is positive definite, which is named as the real
octonion division algebra.

The multiplication law OR × OR → OR can be given as follows: as a vector space OR
admits a basis {e, e1, . . . , e7} such that e is the identity element and as an R-algebra OR is
generated by {e1, . . . , e7} subject to the relations

• for all i, e2i = −e;
• considering the subscripts as elements in Z/7Z, the subspace of OR generated by

{e, ei, ei+1, ei+3} is an associative algebra with relations

e2i = e2i+1 = e2i+3 = −e, eiei+1 = −ei+1ei = ei+3.

We identify the real numbers R with the subalgebra Re of OR and the identity element of
OR will be denoted as 1. Now we recall some basic properties of OR, for which we refer to
[Con12, §5]. There is an anti-involution of algebra x 7→ x called the conjugation on OR,
defined by 1 = 1 and ei = −ei for each i. The trace and norm on OR are defined as:

Tr(x) = x+ x, N(x) = x · x = x · x.

10



The multiplication law on OR implies that

Tr(xy) = Tr(yx) = Tr(x · y) for all x, y ∈ OR. (2.1)

For an element x = x0 +
7∑
i=1

xiei ∈ OR, its norm N(x) equals
∑7

i=0 x
2
i , from which we can

see that N is a positive definite quadratic form. Its associated symmetric bilinear form is
〈x, y〉 := N(x+ y)− N(x)− N(y) = x · y + y · x = Tr(x · y).

Although the multiplication law of OR is not associative, it is still trace-associative in
the sense that

Tr((x · y) · z) = Tr(x · (y · z)) for all x, y, z ∈ OR,

and we can define Tr(xyz) := Tr((x · y) · z) = Tr(x · (y · z)).
For our construction, we still have to recall the exceptional Jordan algebra, following

[Con12, §6]:

Definition 2.1.3. The (positive definite) real exceptional Jordan algebra, denoted by JR,
is the 27-dimensional R-vector space consisting of “Hermitian” matrices in M3(OR), i.e.
matrices of the form a z y

z b x
y x c

 , a, b, c ∈ R, x, y, z ∈ OR,

equipped with the R-bilinear multiplication law

JR × JR → JR, A ◦B :=
1

2
(AB +BA),

where AB and BA denote the usual product of octonionic matrices, and with 2-sided identity
element I given by the standard matrix identity element diag(1, 1, 1).

As an R-algebra, JR is commutative but not associative.

Notation 2.1.4. To compress the space, when we do not need to emphasize the matrix
structure of elements in JR, we denote the elementa z y

z b x
y x c

 , a, b, c ∈ R, x, y, z ∈ OR

by [a, b, c ; x, y, z] for short.

The trace of A = [a, b, c ; x, y, z] ∈ JR is defined as Tr(A) := a + b + c. The underlying
vector space of JR is equipped with the non-degenerate positive definite quadratic form:

Q(A) := Tr(A ◦ A)/2 =
1

2
(a2 + b2 + c2) + N(x) + N(y) + N(z). (2.2)

11



Its associated bilinear form is BQ(A,B) := Q(A + B) − Q(A) − Q(B) = Tr(A ◦ B). The
determinant of the matrix A is defined by

det(A) := abc+ Tr(xyz)− aN(x)− bN(y)− cN(z). (2.3)

It defines a cubic form on JR.
We denote by F4 the subgroup Aut(JR, ◦) of GL(JR) consisting of elements g ∈ GL(JR)

such that for all A,B ∈ JR, g(A ◦ B) = g(A) ◦ g(B). It is a compact Lie group of type F4

[Ada96, Theorem 16.7].
In this paper, we deal with automorphic forms so we want a reductive group over Q whose

real points is isomorphic to F4. For this purpose, we first define the following Q-algebras:
Definition 2.1.5. Cayley’s definite octonion algebra OQ is the sub-Q-algebra of OR gen-
erated by {e1, . . . , e7}. The (positive definite) rational exceptional Jordan algebra JQ is the
sub-Q-space of JR consisting of [a, b, c ; x, y, z], a, b, c ∈ Q, x, y, z ∈ OQ equipped with the
multiplication ◦.

The main object considered in this paper is the following algebraic group:
Definition 2.1.6. We define F4 to be the closed subgroup of the algebraic Q-group GLJQ ,
which as a functor sends a commutative unital Q-algebra R to the group

F4(R) := Aut(JQ ⊗QR, ◦) = {g ∈ GL(JQ ⊗QR) | g(A ◦B) = g(A) ◦ g(B), ∀A,B ∈ JQ ⊗QR}.

From the definition we have F4(R) = F4. By [Spr00, Theorem 7.2.1], F4 is a semisimple
and simply-connected group over Q.
Remark 2.1.7. We have an alternative description of F4 that we will use later: the closed sub-
group Aut(JQ,det,I)/Q of GLJQ consisting of linear automorphisms that preserve both the cubic
form det and the identity element I. The closed subgroups F4 = Aut(JQ,◦)/Q and Aut(JQ,det,I)/Q
inside GLJQ are both smooth and they have the same geometric points according to [Spr00,
Proposition 5.9.4], so they coincide.

2.2 Reductive Z-models of reductive Q-groups
Now we recall some results in [Gro96; Gro99b]. In this subsection, let G be a connected

reductive algebraic group over Q. Denote the product
∏

p Zp by Ẑ and let Af = Ẑ⊗Z Q be
the ring of finite adèles, and A = R× Af .
Definition 2.2.1. A reductive Z-model of G is a pair (G , ι) consisting of:

• an affine smooth group scheme G of finite type over Z such that G ⊗ZZ/pZ is reductive
over Z/pZ for each prime number p,

• an isomorphism ι : G ⊗Z Q ' G of algebraic groups over Q.
Two reductive Z-models (G1, ι1) and (G2, ι2) are said to be isomorphic if there exists an
isomorphism f : G1 → G2 over Z such that the following diagram commutes:

G1 ⊗Z Q G2 ⊗Z Q

G

fQ

ι1 ι2

12



Remark 2.2.2. When there is no confusion about ι, we simply say that G is a reductive
Z-model of G.

From the theory of Chevalley groups in [SGA3, §XXV], every group G split over Q admits
a reductive Z-model. Indeed, we can take the Chevalley group with the same root datum of
G to be its reductive Z-model.

When G is not split, in general the existence of reductive Z-models of G is no longer
ensured. Now we consider the case when G is anisotropic, i.e. G does not contain any
non-trivial split Q-torus. When G has a reductive Z-model, being anisotropic is equivalent
to that G(R) is compact, which is due to [PR94, Theorem 5.5(1)] and [Gro96, Proposition
2.1]. In [Gro96, §1], Gross proves the following result:

Theorem 2.2.3. Let G be an anisotropic semisimple simply-connected Q-group such that
the root system of GC is irreducible, then G admits a reductive Z-model if and only if the
Lie type of G is among:

B(d−1)/2 (d ≡ ±0mod 8),Dd/2 (d ≡ 1mod 8),G2,F4,E8.

The next question is to classify reductive Z-models of a given anisotropic group G up to
some equivalence relation.

Definition 2.2.4. Let (G , id) be a reductive Z-model of its generic fiber G := G ⊗Z Q. A
reductive Z-model (G ′, ι′) of G is said to be in the same genus as G , if ι′(G ′(Ẑ)) and G (Ẑ)
are conjugate in G(Af ).

Remark 2.2.5. This condition is equivalent to that for each prime p, ι′(G ′(Zp)) is conjugate
to G (Zp) in G(Qp), and ι′(G ′(Zp)) = G (Zp) for almost all p.

By [Gro99b, Proposition 1.4], the equivalence classes of reductive Z-models in the genus
of G can be identified with the coset space G(Af )/G (Ẑ).

The group G(Q) acts on reductive Z-models in the genus of G by the formula:

g(G ′, ι′) = (G ′, ad(g) ◦ ι′),

where ad(g) is the conjugation by g. This induces an action of G(Q) on the equivalence
classes of reductive Z-models in the genus of G . We say two reductive Z-models in the genus
of G are G(Q)-conjugate if their equivalence classes are in the same G(Q)-orbit.

Now the set of G(Q)-orbits on the equivalence classes of reductive Z-models in the genus
of G can be identified with the double coset space G(Q)\G(Af )/G (Ẑ), which is finite by
Borel’s famous result [Bor63].

2.3 Reductive Z-models of F4

For our Q-group F4, the F4(Q)-orbits of equivalence classes of reductive Z-models of F4

in some genus is determined by Gross in [Gro96, Proposition 5.3], using the mass formula
[Gro96, Proposition 2.2]. In this subsection we provide an alternative proof for his result,
which will be helpful for our computations in §3.
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2.3.1 Integral structures of OQ and JQ

Parallel to the construction of F4 in §2.1, we want to define integral structures of OQ
and JQ and then use them to construct reductive Z-models of F4.

Definition 2.3.1. Coxeter’s integral order OZ is the Z-lattice of rank 8 inside OQ spanned
by the lattice Z⊕ Ze1 ⊕ · · · ⊕ Ze7 and the four elements

h1 = (1 + e1 + e2 + e4)/2, h2 = (1 + e1 + e3 + e7)/2,

h3 = (1 + e1 + e5 + e6)/2, h4 = (e1 + e2 + e3 + e5)/2,

equipped with the multiplication of OQ. This lattice contains the identity element of OQ
and is stable under the multiplication, i.e. is an order in OQ.

Remark 2.3.2. The underlying lattice of OZ equipped with the quadratic form N|OZ is iso-
metric to the even unimodular lattice

E8 =

{
(xi) ∈ Z8 ∪ (Z+

1

2
)8

∣∣∣∣∣∑
i

xi ≡ 0mod 2

}
.

Let JZ be the lattice

{[a, b, c ; x, y, z] ∈ JQ | a, b, c ∈ Z, x, y, z ∈ OZ}

of rank 27 inside the Q-vector space JQ. This lattice is stable under the Jordan multiplication
◦ on JQ, thus JZ is an order in JQ.

As in Remark 2.1.7, the Q-group F4 coincides with the group Aut(JQ,det,I)/Q. The triple
(JQ, det, I) has a natural integral structure (JZ, det, I). The Z-group scheme Aut(JZ,det,I)/Z,
sending any commutative Z-algebra R to the subgroup of GL(JZ⊗ZR) consisting of elements
preserve the cubic form det and the identity element I, is expected to be a reductive Z-model
of F4, but we are going to consider the Z-group scheme Aut(JZ,det,e)/Z for any e ∈ JZ satisfying
certain conditions, in order to produce several reductive Z-models of F4 uniformly.

Definition 2.3.3. An element

A =

a z y
z b x
y x c

 ∈ JR

is said to be positive definite if its seven “minor determinants”

a, b, c, ab− N(z), bc− N(x), ca− N(y), det(A) ∈ R

are all positive. A positive definite element e in JR with det e = 1 is called a polarization.

Given a polarization e contained in the lattice JZ, one constructs a Z-group scheme
F4,e := Aut(JZ,det,e)/Z in the same way as Aut(JZ,det,I)/Z. The following result shows that this
group scheme is a reductive Z-model of F4.
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Proposition 2.3.4. [Con12, Proposition 6.6, Example 6.7] For any choice of polarization
e ∈ JZ, the fiber F4,e ⊗Z Z/pZ is semisimple for every prime number p, and F4,e(R) is a
compact Lie group of type F4.

Taking e to be the identity element I, the generic fiber of F4,I is Aut(JQ,det,I)/Q = F4, thus
F4,I is a reductive Z-model of F4.

If we take e to be

E := [2, 2, 2 ; β, β, β], β =
1

2
(−1 + e1 + e2 + · · ·+ e7) ∈ JZ,

as in [EG96, (5.4)], by [Con12, Example 6.7] the generic fiber of F4,E is isomorphic to F4.
We denote the natural isomorphism F4,E ⊗Z Q → F4 by ι. Actually ι can be given as the
conjugation by an element in the Q-points of the Q-group Aut(JQ,det)/Q which sends E to I.

In [Gro96, Proposition 5.3], Gross proves the following result:
Proposition 2.3.5. There are two F4(Q)-orbits on the equivalence classes of reductive Z-
models of F4 in the genus of F4,I, whose representatives are given by (F4,I, id) and (F4,E, ι)
respectively.

Applying the mass formula [Gro96, Proposition 2.2] to F4, we have∑
(G ,ι)

1

|G (Z)|
=

1

24
ζ(−1)ζ(−5)ζ(−7)ζ(−11) =

691

215 · 36 · 52 · 72 · 13
, (2.4)

where (G , ι) varies over the F4(Q)-conjugacy classes of reductive Z-models of F4 in the genus
of F4,I. As

691

215 · 36 · 52 · 72 · 13
=

1

215 · 36 · 52 · 7
+

1

212 · 35 · 72 · 13
, (2.5)

in order to prove Proposition 2.3.5 it suffices to prove the following two things:
• F4,I and F4,E are not F4(Q)-conjugate.
• |F4,I(Z)| ≤ 215 · 36 · 52 · 7 and |F4,E(Z)| ≤ 212 · 35 · 72 · 13.

In his proof, Gross cites some results from [ATLAS], We are going to give another proof of
Proposition 2.3.5, which avoids using results in [ATLAS].

2.3.2 F4,E(Z)

Now we deal with the finite group F4,E(Z). Our goal is to prove:
Proposition 2.3.6. |F4,E(Z)| ≤ 212 · 35 · 72 · 13.

With the choice of polarization E, we can define a new bilinear form on JQ:
〈A,B〉E = (A,E,E)(B,E,E)− 2(A,B,E),

where the trilinear form ( , , ) : J3Q → Q is defined by

(A,B,C) =
1

2
[det(A+B + C)− det(A+B)− det(B + C)− det(C + A)

+ det(A) + det(B) + det(C)].

This bilinear form is positive definite and integral on JZ by [EG96, Proposition 7.2].
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Notation 2.3.7. Here we give some notations for elements in JR: we write

E1 := [1, 0, 0 ; 0, 0, 0],E2 := [0, 1, 0 ; 0, 0, 0],E3 := [0, 0, 1 ; 0, 0, 0]

and for any x ∈ OR,

F1(x) := [0, 0, 0 ; x, 0, 0],F2(x) := [0, 0, 0 ; 0, x, 0],F3(x) := [0, 0, 0 ; 0, 0, x].

Note that 1, e1, e2, e3, h1, h2, h3, h4 is a basis of the lattice OZ, thus we have the following
basis of JZ:

B :=

(
E1,E2,E3,F1(1),F1(e1),F1(e2),F1(e3),F1(h1),F1(h2),F1(h3),F1(h4),F2(1),F2(e1),F2(e2),

F2(e3),F2(h1),F2(h2),F2(h3),F2(h4),F3(1),F3(e1),F3(e2),F3(e3),F3(h1),F3(h2),F3(h3),F3(h4)

)
. (2.6)

In the basis B, we give the Gram matrix of the quadratic lattice (JZ, 〈 , 〉E) in Figure 1,
Appendix A.

Proof of Proposition 2.3.6. Each element in F4,E(Z) = Aut(JZ, det,E) preserves the bilinear
form 〈 , 〉E by the definition, thus this finite group is a subgroup of the isometry group
O(JZ, 〈 , 〉E) of the quadratic lattice (JZ, 〈 , 〉E).

The order of O(JZ, 〈 , 〉E) can be determined with the help of the Plesken-Souvignier
algorithm. Concretely, we can apply the qfauto function in [PARI/GP] to the Gram matrix
Figure 1 of (JZ, 〈 , 〉E), and we find

|O(JZ, 〈 , 〉E)| = 213 · 35 · 72 · 13.

Notice that the isometry group contains an involution −id, which does not fix E, thus
we have

|F4,E(Z)| ≤
1

2
|O(JZ, 〈 , 〉E)| = 212 · 35 · 72 · 13.

Remark 2.3.8. The orthogonal complement of E in (JZ, 〈 , 〉E) is a 26-dimensional even lattice
of determinant 3 and with no roots [EG96, Proposition 7.2]. In Borcherds’ thesis [Bor99,
§5.7], he proves that a lattice satisfying these conditions is unique up to isomorphism and
calculates the order of its isometry group, giving another proof of Proposition 2.3.6.

Furthermore, the qfauto function also give us a set of generators {−id,−σ1, σ2} of
O(JZ, 〈 , 〉E), where the matrices of σ1, σ2 in the basis B (2.6) are given in Figure 2, Ap-
pendix A. Here we write −σ1 instead of σ1 because the second element in the result given
by [PARI/GP] sends E to −E. The isometry group O(JZ, 〈 , 〉E) is the direct product of
the subgroup generated by σ1, σ2 and the order 2 central subgroup ±id. In the proof of
Proposition 2.3.6, we find that F4,E(Z) is a subgroup of the group 〈σ1, σ2〉.

In the basis B, the cubic form det on JR can be written down as a 27-variable polynomial
of degree 3, and we give this polynomial function as MatDet in our [PARI/GP] program
[Sha]. Using [PARI/GP], we verify that σ1 and σ2 both preserve the cubic form det and the
element E, thus F4,E(Z) and the group 〈σ1, σ2〉 coincide and |F4,E(Z)| = 212 · 35 · 72 · 13.
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2.3.3 F4,I(Z)

Now we look at the finite group F4,I(Z) = Aut(JZ, det, I) = Aut(JZ, ◦), and we want to
prove the following proposition:
Proposition 2.3.9. The reductive Z-model F4,I of F4 is not F4(Q)-conjugate to F4,E, and
|F4,I(Z)| ≤ 215 · 36 · 52 · 7.

Denote the subset of JZ consisting of diagonal matrices by D, and the subset of elements
whose diagonal entries are zero by D0. The formula (2.2) for the quadratic form Q on JZ
shows that equipped with Q we have JZ = D0 ⊕ D as quadratic lattices. By Remark 2.3.2,
the quadratic lattice (OZ,N) is isometric to E8, thus D0 is isometric to E8 ⊕ E8 ⊕ E8. On
the other hand, the lattice D is isometric to

I3 = Z3, q : (x1, x2, x3) 7→
1

2

(
x21 + x22 + x23

)
.

Any element of F4,I(Z) preserves the quadratic form Q on JZ, so F4,I(Z) is a subgroup of
the isometry group O(JZ) of the quadratic lattice JZ. By the theory of root lattices, we have

O(JZ) ' O(I3)× (O(OZ) o S3) ,

where S3 is the permutation group of three elements and o stands for the wreath product.
Let p be the restriction map F4,I(Z) ↪→ O(JZ) ↠ O(D), g 7→ g|D, where O(D) ' O(I3) is
isomorphic to {±1}3 o S3.

Let O(D ; I) be the group {σ ∈ O(D) | σ(I) = I}, which is isomorphic to the permutation
group S3. Since elements in F4,I(Z) fix I, the image of p is contained in O(D ; I).
Lemma 2.3.10. The image of p is O(D ; I) ' S3.
Proof. For an element σ ∈ S3, we denote by gσ the element

[a1, a2, a3 ; x1, x2, x3] 7→ [aσ−1(1), aσ−1(2), aσ−1(3) ; ε(σ)(xσ−1(1)), ε(σ)(xσ−1(2)), ε(σ)(xσ−1(3))]
(2.7)

in GL(JZ), where the map ε(σ) : OZ → OZ is defined as identity when σ is even, and as the
conjugation when σ is odd. In this proof, we write x∗ := ε(σ)(x) for short.

For any A = [a1, a2, a3 ; x1, x2, x3] ∈ JZ, by the formula (2.3) for the cubic form det, we
have

det (gσ(A)) =
3∏
i=1

aσ−1(i) + Tr(x∗σ−1(1)x
∗
σ−1(2)x

∗
σ−1(3))−

3∑
i=1

aσ−1(i)N(x
∗
σ−1(i))

=a1a2a3 + Tr(x∗σ−1(1)x
∗
σ−1(2)x

∗
σ−1(3))−

3∑
i=1

aiN(xi).

The property (2.1) of Tr implies that for any x, y, z ∈ OZ,

Tr(xyz) = Tr(yzx) = Tr(zxy) = Tr(x · z · y) = Tr(z · y · x) = Tr(y · x · z),

which can also be stated as Tr(x∗σ−1(1)x
∗
σ−1(2)x

∗
σ−1(3)) = Tr(x1x2x3) for any σ ∈ S3. Hence

det(gσ(A)) = det(A). Since gσ also fixes I, it is an element in F4,I(Z) and its restriction
p(gσ) ∈ O(D ; I) ' S3 is σ, thus Im(p) = O(D ; I).
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Let D be the kernel of p, then we have a short exact sequence of finite groups:

1 → D → F4,I(Z) → O(D ; I) ' S3 → 1. (2.8)

Lemma 2.3.11. The map κ : S3 → F4,I(Z), σ 7→ gσ defined in (2.7) gives a splitting of the
short exact sequence (2.8).

Proof. It suffices to show that σ 7→ gσ is a group homomorphism. For σ, τ ∈ S3, we have

gτ ◦ gσ ([a1, a2, a3 ; x1, x2, x3])
=gτ

(
[aσ−1(1), aσ−1(2), aσ−1(3) ; ε(σ)(xσ−1(1)), ε(σ)(xσ−1(2)), ε(σ)(xσ−1(3))]

)
=

[
a(τσ)−1(1), a(τσ)−1(2), a(τσ)−1(3) ;

ε(τ) ◦ ε(σ)(x(τσ)−1(1)), ε(τ) ◦ ε(σ)(x(τσ)−1(2)), ε(τ) ◦ ε(σ)(x(τσ)−1(3))

]
.

It can be easily seen that the map ε : S3 → GL(OZ) is a group homomorphism, thus
gτ ◦ gσ = gτσ and σ 7→ gσ is also a group homomorphism.

This lemma tells us F4,I(Z) = D o κ(S3) and |F4,I(Z)| = 3! · |D |. Now we study the
structure of D .

Lemma 2.3.12. The group D is isomorphic to the group

˜SO(OZ) :=
{
(α, β, γ) ∈ SO(OZ)

3
∣∣∣α(x)β(y) = γ(xy), ∀x, y ∈ OZ

}
.

Proof. Fix g ∈ D and x ∈ OZ, we define y, z, w ∈ OZ by the formula

g.

0 0 0
0 0 x
0 x 0

 =

0 w z
w 0 y
z y 0

 .

Since g preserves the Jordan multiplication ◦, we have

N(x)

0 0 0
0 1 0
0 0 1

 = g.

0 0 0
0 0 x
0 x 0

 ◦

0 0 0
0 0 x
0 x 0


=

0 w z
w 0 y
z y 0

 ◦

0 w z
w 0 y
z y 0


=

N(z) + N(w) yz wy
yz N(w) + N(y) zw
wy zw N(y) + N(z)

 ,

which implies that z = w = 0 and y = N(x). This gives us a homomorphism g 7→ αg from
D to O(OZ) such that g[0, 0, 0 ; x, 0, 0] = [0, 0, 0 ;αg(x), 0, 0] for ∈ OZ.

Symmetrically, we also get βg, γg ∈ O(OZ) such that

g[0, 0, 0 ; x, y, z] = [0, 0, 0 ;αg(x), βg(x), γg(x)] for all x, y, z ∈ OZ.
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Taking determinants of both sides, we get

Tr(xyz) = Tr(αg(x)βg(y)γg(z)) for all x, y, z ∈ OZ.

This is equivalent to 〈αg(x)βg(y), γg(z)〉 = 〈xy, z〉. Since 〈xy, z〉 = 〈γg(xy), γg(z)〉, we have

〈αg(x)βg(y)− xy, γg(z)〉 = 0

for any z ∈ OZ. The bilinear form 〈 , 〉 is non-degenerate, so αg(x)βg(y) = γg(xy) holds for
any x, y ∈ OZ. By [Yok09, Lemma 1.14.4], we have αg, βg, γg ∈ SO(OZ).

Now we have obtained an injective homomorphism D → ˜SO(OZ). Conversely, by the
definition of the multiplication ◦ and the condition on (α, β, γ) ∈ ˜SO(OZ), the morphism

[a, b, c ; x, y, z] 7→ [a, b, c ;α(x), β(y), γ(z)]

lies in D , thus D ' ˜SO(OZ).

Let ϕ : ˜SO(OZ) → SO(OZ) be the homomorphism sending a triple (α, β, γ) ∈ ˜SO(OZ) to
its third entry γ ∈ SO(OZ).

Proof of Proposition 2.3.9. For the bound on |F4,I(Z)|, it suffices to prove

| ˜SO(OZ)| ≤ 214 · 35 · 52 · 7.

Let (α, β, id) be an element in kerϕ, so α(x)β(y) = xy for all x, y ∈ OZ. Set r = β(1)
and we have α(x) = xr−1 and β(y) = ry. Setting z = xr−1, the relation satisfied by (α, β, id)
becomes:

z(ry) = (zr)y, for all y, z ∈ OZ.

According to [CS03, §8, Theorem 1], the octonion r of norm 1 is real, thus r = ±1 and
kerϕ = {(id, id, id), (−id,−id, id)}. As a consequence, we have

| ˜SO(OZ)| ≤ 2 · | SO(OZ)| = |O(OZ)| = |W(E8)| = 214 · 35 · 52 · 7,

which gives us the desired upper bound for |F4,I(Z)|.
Suppose that the reductive Z-model F4,I of F4 is F4(Q)-conjugate to F4,E, then their Z-

points have the same order as finite groups. In the end of §2.3.2, we prove that |F4,E(Z)| =
212 · 35 · 72 · 13, thus with the same order, the group F4,I(Z) contains an element of order 13.
However, F4,I(Z) is isomorphic to ˜SO(OZ)oS3, whose order is not divided by 13. This leads
to a contradiction.

Now Proposition 2.3.6 and Proposition 2.3.9 together imply Proposition 2.3.5, and as a
corollary the equality in the upper bound in Proposition 2.3.9 holds:

Corollary 2.3.13. The finite group F4,I(Z) has order 215 · 36 · 52 · 7, and ϕ is surjective.
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3 Dimensions of spaces of invariants for F4

For a finite subgroup Γ and an irreducible representation U of the compact Lie group
F4, an interesting problem is to compute the dimension of the space of invariants UΓ. In
this section we will give an algorithm to compute dimUΓ for Γ = F4,I(Z) or F4,E(Z). These
dimensions will play an important role in our computation of spaces of automorphic forms
in §5.1.1. The code of the computations in this section can be found in [Sha].

3.1 Ideas and obstructions
By the highest weight theory, the isomorphism classes of irreducible C-representations of

the compact Lie group F4 are in natural bijection with dominant weights of the irreducible
root system F4. Using notations in [Bou07, §IV.4.9], we denote the weight λ1$1 + λ2$2 +
λ3$3 + λ4$4 by λ = (λ1, λ2, λ3, λ4), where $1, $2, $3, $4 are the four fundamental weights
of F4. Let Vλ be a representative of the isomorphism class of irreducible representations of
F4 with highest weight λ. From now on we call Vλ the irreducible representation of F4 with
highest weight λ for short.

The starting point of the computation of dimVΓ
λ for some finite subgroup Γ of F4 is the

following classic lemma:
Lemma 3.1.1. For a finite subgroup Γ ⊂ F4, we have

dimVΓ
λ =

1

|Γ|
∑
γ∈Γ

Tr|Vλ(γ) =
1

|Γ|
∑

c∈Conj(Γ)

Tr|Vλ(c) · |c|,

where Conj(Γ) is the set of conjugacy classes of Γ and |c| denotes the cardinality of c.
Because of this lemma, it is enough to solve the following two problems to compute

dimVΓ
λ :

(i) Find all conjugacy classes of Γ, and choose a representative in a fixed maximal torus
T ⊂ F4 for each conjugacy class;

(ii) For an element t ∈ T , compute its trace Tr|Vλ(t).
Problem (ii) can be dealt with the following degenerate Weyl character formula:
Proposition 3.1.2. [CR15, Proposition 2.1] Let G be a connected compact Lie group, T
a maximal torus, X = X∗(T ) the character group of T , and Φ the root system of (G, T )
with Weyl group W . Choose a system of positive roots Φ+ ⊂ Φ with base ∆ and also fix a
W -invariant inner product ( , ) on X ⊗Z R. Let λ be a dominant weight in X and t an
element in T . Denote the connected component CG(t)

◦ of the centralizer of t by M . Set
Φ+
M = Φ(M,T )∩Φ+ and WM = {w ∈ W : w−1Φ+

M ⊂ Φ+}. Let ρ and ρM be the half-sum of
the elements of Φ+ and Φ+

M respectively. We have:

Tr|Vλ(t) =
∑

w∈WM ε(w)tw(λ+ρ)−ρ ·
∏

α∈Φ+
M

(α,w(λ+ρ))
(α,ρM )∏

α∈Φ+\Φ+
M
(1− t−α)

, (3.1)

where ε : W → {±1} is the signature and tx denotes x(t) for convenience.
Using this approach, problem (i) is thus the main difficulty for our computation, and we

will solve it in the following subsections.
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3.2 Generators of F4,I(Z) and F4,E(Z)
The finite groups Γ we are interested in are F4,I(Z) and F4,E(Z). To find all their conjugacy
classes, we first determine generators of these groups in this subsection.

In the end of §2.3.2, we have already showed that the group F4,E(Z) is generated by two
elements σ1, σ2. Their matrices in the basis B, given in (2.6), are written down in Figure 2,
Appendix A.

Based on Corollary 2.3.13, we have F4,I(Z) = D o κ(S3), where κ : S3 → F4,I(Z) is the
morphism defined in (2.7). The group D is isomorphic to the group ˜SO(OZ), which is a
double cover of SO(OZ) by Corollary 2.3.13. Therefore it suffices to find generators of D .

Since O(OZ) ' O(E8) is equal to the Weyl group of E8, we can take the following set of
generators for SO(OZ):

{ref(α) ◦ ref(1) |α ∈ OZ,N(α) = 1} ,

where for a root α in OZ the reflection ref(α) is defined as

ref(α)(x) := x− 〈x, α〉α.

For a root α ∈ OZ, let Lα (resp. Rα) be the left (resp. right) multiplication on OZ by α, and
define Bα := Lα ◦Rα = Rα ◦ Lα. These elements are contained in SO(OZ). Notice that for a
root α ∈ OZ, ref(α) ◦ ref(1) = Bα.

Lemma 3.2.1. For any root α ∈ OZ, the triple (Lα,Rα,Bα) is an element in ˜SO(OZ).

Proof. For any x, y ∈ OZ, Lα(x)Rα(y) = (αx)(yα). By Moufang laws [CS03, §6.5],

(αx)(yα) = (α(xy))α = Bα(xy),

thus Lα(x)Rα(y) = Bα(xy) = Bα(xy).

By this lemma, we can take

{(Lα,Rα,Bα) |α ∈ OZ,N(α) = 1} ∪ {(−id,−id, id)}

as generators of D . Together with a set of generators of κ(S3) we have obtained generators
of F4,I(Z).

3.3 Enumeration of conjugacy classes
Now with generators of FI(Z) and F4,E(Z), we can start to enumerate their conjugacy

classes. The ConjugationClasses function in [GAP] can assist us in enumerating the con-
jugacy classes of subgroups of permutation groups. Therefore it is enough to realize these
two finite groups as permutation groups.

For F4,I(Z), we consider its action on the set of vectors v ∈ OZ with BQ(v, v) ≤ 2. The
function qfminim in [PARI/GP] can list all these vectors in the basis B. There are 738 such
vectors and they span the vector space JR, so the action of F4,I(Z) on this set is faithful,

21



which gives us an embedding F4,I(Z) ↪→ S738. We can thus use this embedding to obtain a
set of representatives of conjugacy classes of F4,I(Z) via the help of [GAP].

For the other group F4,E(Z) we use a similar strategy. As mentioned in Remark 2.3.8, the
quadratic lattice (JZ, 〈 , 〉E) has no roots, so we consider the set of v ∈ JZ such that 〈v, v〉E =
3, which has cardinality 1640 and generates JR. This gives an embedding F4,E(Z) ↪→ S1640,
then we can use [GAP].

Here we present the results, and all the codes are available in [Sha].

Proposition 3.3.1. There are 113 conjugacy classes in F4,I(Z), while F4,E(Z) has 49 con-
jugacy classes.

Furthermore, [GAP] gives the size of each conjugacy class c, and selects a representative
for c in the form of permutation. We rewrite these representatives as matrices in the basis
B.

3.4 Kac coordinates
In the previous subsection, for Γ = F4,I(Z) or F4,E(Z), we obtained a list of its conjugacy

classes and a representative element gc ∈ Γ for each conjugacy class c.
However, the representative gc may not be contained in the fixed maximal torus in

Proposition 3.1.2. Notice that in the computation of the trace of gc for a Γ-conjugacy
class c, what really matters is the F4-conjugacy class containing c. Furthermore, since c is
included in the finite group Γ, the F4-conjugacy class containing it must be torsion.

In [Ree10], it is shown that we can choose a representative for a torsion F4-conjugacy
class in a fixed maximal torus using its Kac coordinates. Here we provide a brief review, and
more details can be found in Reeder’s paper.

Let G be a simply-connected simple compact Lie group, T a fixed maximal torus, X :=
X∗(T ) and Y := X∗(T ) the groups of characters and cocharacters respectively, and Φ the
root system of (G, T ). Denote the natural pairing X×Y → Z by 〈 , 〉. Let ∆ = {α1, . . . , αr}
be a set of simple roots of Φ, and {$̌1, . . . , $̌r} its dual basis in Y , i.e. 〈αi, $̌j〉 = δij.

We have a surjective exponential map exp : Y ⊗Z R → T determined uniquely by the
property

α (exp(y)) = e2πi⟨α,y⟩, ∀α ∈ X, y ∈ Y ⊗Z R.

and Y is the kernel of this exponential map. This induces an isomorphism (Y ⊗ZR)/Y ' T .
Let α̃0 =

r∑
i=1

aiαi be the highest root with respect to the choice of simple roots ∆, and

set α0 = 1− α̃0, a0 = 1 and $̌0 = 0. Now we have
r∑
i=0

aiαi = 1. The alcove determined by ∆

is the intersection of half-spaces:

C = {x ∈ Y ⊗Z R | 〈αi, x〉 > 0, ∀i = 0, 1, . . . , r} ,

or

C =

{
r∑
i=0

xi$̌i

∣∣∣∣∣
r∑
i=0

aixi = 1, xi ≥ 0, ∀i = 0, 1, . . . , r

}
.
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Each torsion element s ∈ G is conjugate to exp(x) for a unique x ∈ C ∩ (Y ⊗Z Q) since
the group G is simply-connected. Let m be the order of s, thus

x =
1

m

r∑
i=1

si$̌i

for some non-negative integers s1, . . . , sr satisfying gcd{m, s1, . . . , sr} = 1.
Since x ∈ C, we set s0 := m −

r∑
i=1

aisi ≥ 0. Now the non-negative integers s0, s1, . . . , sr
satisfy gcd{s0, . . . , sr} = 1 and the equation

r∑
i=0

aisi = m with a0 = 1.

The coordinates (s0, s1, . . . , sr) are called the Kac coordinates of s, which are uniquely de-
termined by the G-conjugacy class of s.

In our case, the compact group F4 is simply-connected and the highest root α̃0 = 2α1 +
3α2 + 4α3 + 2α4. Here α1, α2, α3, α4 are still chosen as in [Bou07, §IV.4]. In conclusion, we
have:

Proposition 3.4.1. Let T be a fixed maximal torus of F4. Any element of order m in F4

is conjugate to a unique element exp(
∑4
i=1 siϖi
m

) for some non-negative integers s1, s2, s3, s4
arising from a 5-tuple (s0, s1, s2, s3, s4) in{

(x0, . . . , x4) ∈ N5
∣∣ x0 + 2x1 + 3x2 + 4x3 + 2x4 = m, gcd{x0, . . . , x4} = 1

}
. (3.2)

By solving the equation in (3.2), we enumerate all the torsion F4-conjugacy classes of
order m.

3.5 Comparison of conjugacy classes
Now we can enumerate F4-conjugacy classes of a given order, but there are more con-

straints on the F4-conjugacy classes containing Γ-conjugacy classes obtained in §3.3. So we
define the following class of F4-conjugacy classes:

Definition 3.5.1. Let c be an F4-conjugacy class, and we say that c is a rational conjugacy
class if it satisfies:

• its trace Tr(c)|f4 on the adjoint representation f4 of F4 is a rational number;
• its characteristic polynomial Pc(X) := det(X · id − g|JC) on JC := JR ⊗R C, g ∈ F4

being a representative of c, has rational coefficients.

For Γ = F4,I(Z) or F4,E(Z), since Γ is a subgroup of GL(JZ), the F4-conjugacy class
containing a Γ-conjugacy class of Γ must be rational in the sense of Definition 3.5.1.

Our strategy in this subsection is:
(1) find all rational torsion F4-conjugacy classes, and for each of them choose a represen-

tative in the maximal torus T fixed before in §3.4;
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(2) determine which F4-conjugacy class contains a given Γ-conjugacy class by comparing
their traces and characteristic polynomials.

Before explaining the algorithm for step (1), we state the following lemma:

Lemma 3.5.2. If m is the order of an element in F4 whose characteristic polynomial on JC
has rational coefficients, then m = 66, 70, 72, 78, 84 or 90, or m ≤ 60.

Proof. As a representation of F4, JC is isomorphic to Vϖ4 ⊕C, where C stands for the trivial
representation. Since the zero weight appears twice in the weights of Vϖ4 , the characteristic
polynomial is divisible by (X − 1)3. On the other hand, the roots of this polynomial contain
a primitive mth root of unity, thus the polynomial is also divisible by the mth cyclotomic
polynomial. Hence we have ϕ(m) ≤ 24, where ϕ denotes the Euler function. This implies
m ≤ 60, or m = 66, 70, 72, 78, 84 or 90.

With the help of [PARI/GP], we enumerate all the Kac coordinates s = (s0, s1, s2, s3, s4)
satisfying the conditions in (3.2) for each integer m in

{n ≤ 60 |ϕ(n) ≤ 24} ∪ {66, 70, 72, 78, 84, 90}.

For each such s, we compute the trace on f4 and the characteristic polynomial on JC of
the corresponding element t = exp(

∑4
i=1 siϖi
m

) ∈ T . Using this algorithm, we get the Kac
coordinates of all rational torsion F4-conjugacy classes.

Proposition 3.5.3. There are exactly 102 rational torsion conjugacy classes in F4, whose
Kac coordinates are listed in Table 4.

Our result coincides with [Pad98, Table 9.1]. In Table 4, we also list the invariants defined
below for all rational torsion F4-conjugacy class.

For a representative g ∈ F4 of a rational torsion conjugacy class c, we can compute its
characteristic polynomial on JC:

Pg(X) = det (X · id− g|JC) =
27∑
i=0

(−1)i+1ai(g)X
i.

Now we assign to g a quadruple

i(g) := (a26(g), a25(g), a24(g),Tr(Ad(g)|f4)) ,

and set i(c) := i(g).

Corollary 3.5.4. Let g1, g2 be two elements in either F4,I(Z) or F4,E(Z), then g1 and g2 are
conjugate in F4 if and only if i(g1) = i(g2).

Proof. This follows from Table 4. For each rational torsion conjugacy class c, we list its
order o(c) and the associated quadruple i(c). We observe that two different classes c have
different i(c).
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Remark 3.5.5. There exist examples of two different rational torsion conjugacy classes in F4

whose characteristic polynomials on JC are the same. For instance, the order 12 conjugacy
classes c1 and c2 represented by the Kac coordinates (1, 1, 1, 1, 1) and (2, 1, 0, 1, 2) respectively
share the same characteristic polynomial on JC:

X27 −X24 − 2X15 + 2X12 +X3 − 1.

However, the trace of c1 on f4 is 0, while that of c2 is 3. This shows that the 26-dimensional
irreducible representation of F4 is not “excellent” in the sense of Padowitz. It is also observed
in Padowitz’s table [Pad98, Table 9.1] that the motives attached to the centralizers of these
two conjugacy classes, in the sense of Gross, are different.

Now we explain our algorithm for step (2). For each Γ-conjugacy class c and its repre-
sentative gc chosen in §3.3, we compute the quadruple i(gc) and compare it with Table 4.
By Corollary 3.5.4 we can determine the F4-conjugacy class containing c. In Table 5 we
list all the Kac coordinates s whose corresponding rational conjugacy class cs in F4 satisfies
that cs ∩ F4,I(Z) or cs ∩ F4,E(Z) is non-empty, as well as the cardinalities of intersections
n1(s) = |cs ∩ F4,I(Z)| and n2(s) = |cs ∩ F4,E(Z)|.

3.6 The formula for dimVΓ
λ

Now we can deduce the formula for di(λ) := dimVΓi
λ , i = 1, 2, where Γ1 := F4,I(Z) and

Γ2 := F4,E(Z), for a given dominant weight λ:

dimVΓi
λ =

1

|Γi|
∑

c∈Conj(Γi)

Tr|Vλ(c) · |c| =
1

|Γi|
∑

c∈Conj(F4)

Tr|Vλ(c) · |c ∩ Γi|.

For each rational conjugacy class c whose contribution to this formula is nonzero, we have
already given |c∩Γi| in Table 5, and according to Proposition 3.1.2 the trace Tr|Vλ(c′) is an
explicit function of λ1, λ2, λ3, λ4.

This gives us the following theorem, which is the main computational result of this paper:

Theorem 3.6.1. For each dominant weight λ of the compact Lie group F4, we have an
explicit formula for

di(λ) = dimVΓi
λ , i = 1, 2.

For dominant weights λ = (λ1, λ2, λ3, λ4) with 2λ1 + 3λ2 + 2λ3 + λ4 ≤ 13, we list all the
nonzero d(λ) := d1(λ) + d2(λ) in Table 6.

Remark 3.6.2. Later we will see the condition on λ in Theorem 3.6.1 is equivalent to that
the maximal eigenvalue of the infinitesimal character associated to Vλ is not larger than 21.

In [Sha], we also provide a larger table of [λ, d1(λ), d2(λ), d(λ)] for weights with 2λ1 +
3λ2 + 2λ3 + λ4 ≤ 40.
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4 Subgroups of F4

In this section we will classify subgroups of the compact Lie group F4 = Aut(JR, ◦)
satisfying certain conditions and determine their centralizers in F4. Our results will be used
in §6, but this problem also has its own interest. Our precise aim is to find all the conjugacy
classes of closed subgroups H of F4 such that:

(1) H is connected;
(2) The centralizer of H in F4 is an elementary finite abelian 2-groups, i.e. it is a product

of finitely many copies of Z/2Z.
(3) The multiplicity of zero weight in the restriction of the 26-dimensional irreducible

representation Vϖ4 of F4 to H is 2.
If we only consider the first condition, the problem is equivalent to classifying connected

semisimple Lie subalgebras of the complexified Lie algebra f4, up to the adjoint action of
F4(C). This has been studied by Dynkin in [Dyn57] for all simple complex Lie algebras,
without giving full details. So we will give a detailed classification for F4 in this section,
following Dynkin’s original idea and Losev’s result [Los10, Theorem 7.1].

Briefly, our strategy is to enumerate first all the connected simple subgroups of F4 inside
maximal proper compact subgroups, and to index them by the restrictions of Vϖ4 . Then
we compute their centralizers case by case, and combine these results together to get all the
connected subgroups satisfying our conditions.

4.1 Element-conjugacy implies conjugacy
To be more precise, what we want to classify, up to F4-conjugacy, are embeddings from

connected compact Lie groups to F4 satisfying two additional conditions. In this subsection
we will explain why it is enough to consider their element-conjugacy classes, where the notion
of element-conjugacy is defined as follows:

Definition 4.1.1. [FHS16, §1] Let G and H be two compact Lie groups and φ, φ′ : H → G
be two Lie group homomorphisms. We say that φ and φ′ are conjugate if there is an element
g ∈ G such that

gφ(h)g−1 = φ′(h), for all h ∈ H.

They are said to be element-conjugate if for every h ∈ H, there is a g ∈ G such that

gφ(h)g−1 = φ′(h).

The element-conjugacy can be rephrased in the following way:

Lemma 4.1.2. Let φ, φ′ : H → G be two homomorphisms between compact Lie groups, then
they are element-conjugate if and only if for each linear representation π : G → GL(V ) the
compositions π ◦ φ and π ◦ φ′ are conjugate in GL(V ).

Proof. It is a consequence of the Peter-Weyl theorem for compact Lie groups, which says
that two elements of G are conjugate if and only if they have the same trace on all the
irreducible representations of G.
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It is obvious that two conjugate homomorphisms are element-conjugate, but the converse
fails in general. Fortunately, the converse holds when G = F4, due to the following result
for Lie algebras:

Theorem 4.1.3. [Los10, Proposition 6.2, Theorem 7.1] Let f4 be a simple complex Lie
algebra of type F4 and F4,C the complexification of F4. Let h be a reductive algebraic Lie
algebra, i.e. h is the Lie algebra of some reductive complex group, and φ, φ′ : h → f4 two
injective Lie algebra homomorphisms. If the restrictions of φ and φ′ to a Cartan subalgebra
s of h are conjugate in the sense that ϕ ◦ φ|s = φ′|s for an inner automorphism ϕ of f4, then
φ and φ′ are conjugate.

Remark 4.1.4. Actually, in [Los10] Losev uses the following equivalence relation on Lie alge-
bra homomorphisms: two Lie algebra homomorphisms φ, φ′ : h → g are equivalent if there
exist liftings H → G of φ, φ′ to reductive complex groups which are G-conjugate in the sense
of Definition 4.1.1. By Lie group-Lie algebra correspondence this equivalence relation is the
same as ϕ ◦ φ = φ′ for an inner automorphism ϕ of f4.

This theorem implies the result we need for F4:

Proposition 4.1.5. For any connected compact Lie group H, two element-conjugate homo-
morphisms from H to F4 are conjugate.

Proof. The argument that deduces this result from Theorem 4.1.3 can be found in the proof
of [FHS16, Proposition 3.5].

4.2 A criterion for element-conjugacy
According to Lemma 4.1.2 and Proposition 4.1.5, to check whether two homomorphism φ

and φ′ from a connected compact Lie group H to F4 are conjugate, it suffices to verify that for
every irreducible representation π of F4, π ◦φ and π ◦φ′ are equivalent as H-representations.
Moreover, we have the following useful fact:

Proposition 4.2.1. Let (π0, J0) be the 26-dimensional irreducible representation of F4. Two
homomorphisms φ, φ′ from a connected compact subgroup H to F4 are conjugate if and only
if two H-representations π0 ◦ φ and π0 ◦ φ′ are equivalent.

This result is a part of [Dyn57, Theorem 1.3], but Dynkin only gives a short sketch of
the proof, so in this subsection we will give the proof of Proposition 4.2.1.

We first give a preliminary discussion on orders. LetX be an abelian group and ` : X → R
a Z-linear map. This map induces a total preorder ≤ on X defined by x ≤ y if and only
if `(x) ≤ `(y). A preorder on X of this form will be called an L-preorder. If the map `
is injective, the L-preorder it induces is an order and we call this order an L-order. For
instance, any free abelian group of finite rank admits L-orders.

Lemma 4.2.2. Let f : X → Y be a homomorphism between finitely generated free abelian
groups X and Y , with an L-order on Y , and S a finite subset of X − {0}. There exists an
L-preorder ≤ on X such that for any s ∈ S we have either s > 0 or s < 0, and if s > 0 then
f(s) ≥ 0 in Y .
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Proof. We choose ` : Y ↪→ R such that the L-order on Y is defined by `. Write S = S0 tS1,
with S0 = S ∩ ker f . If S0 is empty, then the L-preorder on X defined by ` ◦ f satisfies the
conditions.

If S0 is not empty, we choose an arbitrary injective Z-linear map j : X ↪→ R and set

ε :=
1

2
min
s∈S1

|`(f(s))|
|j(s)|

.

We claim that the L-preorder on X defined by j′ = `◦f + εj satisfies the desired conditions.
Indeed, for s ∈ S0, j′(s) = εj(s) is nonzero. Also for s ∈ S1, by our choice of ε, we have
|εj(s)| < |`(f(s))|, so j′(s) is nonzero and of the same sign as `(f(s)).

The next lemma concerns the partial order � of the weights of the 26-dimensional irre-
ducible representation π0 of F4. Recall that for two weights λ and µ of F4, fixing a positive
root system of F4, we write λ � µ if λ− µ is a finite sum of positive roots.

Lemma 4.2.3. The 26-dimensional irreducible representation (π0, J0) of F4 has four unique
weights λ1 � λ2 � λ3 � λ4 satisfying that λ ≺ λ4 for all other weights λ. Moreover, those 4
weights λ1, λ2, λ3, λ4 form a Z-basis of the weight lattice of F4.

Proof. Fix a maximal torus T of F4, and let X = X∗(T ) be its character lattice and Φ+ ⊂ X
a positive root system with respect to (F4, T ). We still use Bourbaki’s notations [Bou07,
§IV.4.9] for the root system F4. The simple roots with respect to Φ+ are given by

α1 = ε2 − ε3, α2 = ε3 − ε4, α3 = ε4, α4 =
1

2
(ε1 − ε2 − ε3 − ε4),

where ε1, ε2, ε3, ε4 is the basis of X ⊗Z R ' R4 chosen in [Bou07] satisfying

X = Zε1 + Zε2 + Zε3 + Zε4 + Z
ε1 + ε2 + ε3 + ε4

2
.

The highest weight of π0 is $4 = α1 + 2α2 + 3α3 + 2α4 = ε1. The orbit of $4 under the
Weyl group consists of ±εi for i = 1, 2, 3, 4 and 1

2
(±ε1± ε2± ε3± ε4). These 24 weights have

multiplicity 1, and the zero weight appears with multiplicity 2.
We claim that the weights

λ1 = ε1, λ2 =
1

2
(ε1 + ε2 + ε3 + ε4),

λ3 =
1

2
(ε1 + ε2 + ε3 − ε4), λ4 =

1

2
(ε1 + ε2 − ε3 + ε4)

satisfy the desired properties. Indeed, this follows from the following table:
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positive weight λ relation with λ1, λ2, λ3, λ4
ε1 λ1
ε2 λ4 − α3 − α4

ε3 λ4 − α1 − α3 − α4

ε4 λ4 − α1 − α2 − α3 − α4

(ε1 + ε2 + ε3 + ε4)/2 λ2 = λ1 − α4

(ε1 + ε2 + ε3 − ε4)/2 λ3 = λ2 − α3

(ε1 + ε2 − ε3 + ε4)/2 λ4 = λ3 − α2

(ε1 + ε2 − ε3 − ε4)/2 λ4 − α3

(ε1 − ε2 + ε3 + ε4)/2 λ4 − α1

(ε1 − ε2 + ε3 − ε4)/2 λ4 − α1 − α3

(ε1 − ε2 − ε3 + ε4)/2 λ4 − α1 − α2 − α3

(ε1 − ε2 − ε3 − ε4)/2 λ4 − α1 − α2 − 2α3

Table 1: Positive weights of the 26-dimensional irreducible representation Vϖ4 of F4

and the following identities:

ε1 = λ1, ε2 = −λ1 + λ3 + λ4, ε3 = λ2 − λ4, ε4 = λ2 − λ3,
ε1 + ε2 + ε3 + ε4

2
= λ2.

Proof of Proposition 4.2.1. By Proposition 4.1.5 it suffices to show that if π0 ◦ φ and π0 ◦ φ′

are equivalent as H-representations, then φ and φ′ are element-conjugate. Since any element
of H is included in some maximal torus, we may assume that H is a torus.

We fix a maximal torus T of F4. As all maximal tori are conjugate in F4, up to replacing
φ and φ′ by some F4-conjugate, we assume that both φ(H) and φ′(H) are contained in T .
Let X = X∗(T ) and Y = X∗(H), then φ and φ′ induce Z-linear maps φ∗, φ′,∗ : X → Y
respectively.

Choose an arbitrary L-order on Y , and denote by Φ ⊂ X the root system of (F4, T ).
By Lemma 4.2.2, there is an L-preorder ≤ (resp. ≤′) on X such that for any α ∈ Φ we
have either α > 0 or α < 0 (resp. either α >′ 0 or α <′ 0), and the Z-linear map φ∗ (resp.
φ′,∗) preserves the preorders on X,Y . We denote the positive root system determined by the
L-preorder ≤ (resp. ≤′) by Φ+ (resp. Φ+,′).

A general fact about root systems is that the Weyl group of (F4, T ) acts transitively on
the set of positive root systems of (F4, T ). Up to conjugating φ′ by a suitable element in the
normalizer NF4(T ), we may assume that Φ+,′ = Φ+. Now our aim is to show φ = φ′, which
is equivalent to φ∗ = φ′,∗.

Let W be the multiset of X consisting of the weights appearing in π0. Let λ1 � λ2 �
λ3 � λ4 be the 4 weights of π0 defined in Lemma 4.2.3 and all of them have multiplicity 1 in
π0. For the Z-linear map f = φ∗ or φ′,∗, the preorder-preserving property of f and Table 1
imply that f(λ1) ≥ f(λ2) ≥ f(λ3) ≥ f(λ4) and f(λ4) ≥ f(λ) for all other weights λ of π0. In
other words, f(λ1) is the greatest element of f(W), and for i = 2, 3, 4, f(λi) is the greatest
element of f(W) \ {f(λ1), . . . , f(λi−1)}. By the assumption π0 ◦ φ = π0 ◦ φ′, the multisets
φ∗(W) and φ′,∗(W) of Y coincide. It follows that we have φ∗(λi) = φ′,∗(λi) for i = 1, 2, 3, 4,
and as λ1, λ2, λ3, λ4 form a basis of X by Lemma 4.2.3, we deduce φ∗ = φ′,∗.
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Hence the conjugacy class of a homomorphism from a connected compact Lie group H
to F4 is determined by the restriction of the 26-dimensional irreducible representation to H.

4.3 Maximal proper connected subgroups
Up to conjugacy, the compact group F4 has five maximal proper connected subgroups by

[Dyn57, Theorem 5.5, Theorem 14.1]. We will recall these five subgroups in this subsection
and show that there are no other maximal proper connected subgroups.

We first introduce the following notations, which will be used a lot of times in this section:

Notation 4.3.1. In this article, we use the following notations of compact Lie groups:
• For n ≥ 2, denote by SU(n) the compact special unitary group with respect to the

standard Hermitian form on Cn.
• For n ≥ 3, denote by SO(n) the compact special orthogonal group with respect to the

standard quadratic form on Rn, and by Spin(n) the compact spin group, which is a
double cover of SO(n).

• For n ≥ 1, denote by Sp(n) the compact symplectic group: the group of invertible
n× n quaternionic matrices that preserve the standard Hermitian form

〈x, y〉 = x1y1 + · · ·+ xnyn

on Hn, where H is Hamilton’s quaternions.
• The group G2 is defined as Aut(OR, ◦), the automorphism group of the real octonion

division algebra, which is simply connected and has trivial center.

Remark 4.3.2. The complexification of the compact symplectic group Sp(n) is the usual
complex symplectic group Sp(2n,C) = Sp2n(C), which is defined as the group of linear
transformations of C2n preserving the standard symplectic bilinear form.

Notation 4.3.3. We denote by µn the group of nth roots of unity. If m groups G1, . . . , Gm

all have a unique central subgroup isomorphic to µn with an embedding ιi : µn ↪→ Gi, we
denote by µ∆

n the diagonal subgroup

{(ι1(g), . . . , ιm(g)) | g ∈ µn} ⊂ G1 × · · · ×Gm.

Note that when n = 2 the embedding ιi is unique, but when n ≥ 3 we have to give ι1, . . . , ιm
for defining µ∆

n .

Following Dynkin’s definitions of R-subalgebras and S-subalgebras in [Dyn57, §7], we
give the following definition for subgroups:

Definition 4.3.4. Let G be a connected compact Lie group and H a connected closed
subgroup. We say that H is a regular subgroup if it is normalized by a maximal torus of
G. If there is only one regular subgroup of G containing H, namely G itself, we call H an
S-subgroup, otherwise we call it an R-subgroup.

Examples 4.3.5. (1) Subgroups with maximal ranks are regular.
(2) A proper regular subgroup is an R-subgroup.
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(3) The principal 3-dimensional subgroups are S-subgroups by [Dyn57, Theorem 9.1].
(4) A maximal proper regular subgroup has maximal rank.

LetH be a maximal proper regular subgroup ofG, i.e. if there is another regular subgroup
H ′ of G containing H, then we have H ′ = G. The Borel-de Siebenthal theory tells us the
Dynkin diagram of the root system of H is obtained by deleting an ordinary vertex with
prime label from the extended Dynkin diagram of the root system of G.

For our compact group F4, the extended Dynkin diagram is:

α0 α1 α2 α3 α4

1 2 3 4 2
,

The vertex α1 corresponds to (Sp(1)× Sp(3)) /µ∆
2 , α2 corresponds to (SU(3)× SU(3)) /µ∆

3

(we will define this µ∆
3 in §4.3.3), and α4 corresponds to Spin(9). The vertex α3 corresponds

to (SU(2)× SU(4)) /µ∆
2 , which is also regular but not maximal since we have the embedding:

(SU(2)× SU(4)) /µ∆
2 ' (Spin(3)× Spin(6)) /µ∆

2 ↪→ Spin(9).

These three maximal proper regular subgroups are also maximal among proper connected
subgroups of F4, because any connected subgroup containing one of them has maximal rank
and must be regular.

Besides these three regular subgroups, F4 also admits other maximal proper connected
subgroups that are not regular. A non-regular maximal connected subgroup H of F4 must
be an S-subgroup. As a subgroup of F4 containing an S-subgroup is also an S-subgroup, it
suffices to find all maximal S-subgroups of F4.

Theorem 4.3.6. [Dyn57, Theorem 14.1] Up to conjugacy, there are two maximal S-
subgroups in F4: the principal PSU(2) and G2 × SO(3), where PSU(2) := SU(2)/{±id}
is the adjoint group of SU(2).

Putting the Borel-de Siebenthal theory and Theorem 4.3.6 together, we have:

Theorem 4.3.7. Up to conjugacy, there are five maximal proper connected subgroups of F4.
They are respectively isomorphic to

Spin(9), (Sp(1)× Sp(3)) /µ∆
2 , (SU(3)× SU(3)) /µ∆

3 ,G2 × SO(3), (principal) PSU(2).

In the rest of this subsection, we will give the explicit embeddings of these five maximal
proper connected subgroups into F4 and compute their centralizers in F4.

4.3.1 Spin(9)

There is an involution σ ∈ F4 on JR defined by:

σ [a, b, c ; x, y, z] = [a, b, c ; x,−y,−z] , for all a, b, c ∈ R, x, y, z ∈ OR.

By [Yok09, Theorem 2.9.1], the centralizer CF4(σ) of σ in F4 is also the stabilizer of E1 =
diag(1, 0, 0) ∈ JR.
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Lemma 4.3.8. The group CF4(σ) preserves respectively the subspaces

J1 := {[0, b,−b ; x, 0, 0] | b ∈ R, x ∈ OR}

and
J2 := {[0, 0, 0 ; 0, y, z] | y, z ∈ OR}

of JR.

Proof. The first subspace J1 is exactly {X ∈ JR |E1 ◦ X = 0,Tr(X) = 0} and the second
subspace is {X ∈ JR | 2E1 ◦ X = X}. The lemma follows from the fact that CF4(σ) is the
stabilizer of E1 in F4.

This lemma gives the following group homomorphism:

CF4(σ) → SO(J1) ' SO(9), g 7→ g|J1 ,

which induce an isomorphism CF4(σ) ' Spin(9) by [Ada96, Theorem 16.7(ii)]. Since the
Borel-de Siebenthal theory shows that the regular connected subgroup of type B4 is unique
up to F4-conjugacy, so we shall thus refer to this group CF4(σ) as Spin(9) in the sequel, by
a slight abuse of language.

The restriction of the 26-dimensional irreducible representation (π0, J0) to Spin(9) is
isomorphic to

1⊕ V9 ⊕ VSpin, (4.1)

where 1 is the trivial representation, V9 is the standard 9-dimensional representation and
VSpin is the 16-dimensional spinor module. These two representations V9 and VSpin can be
realized on J1 and J2 respectively.

Notation 4.3.9. To make the restriction of J0 not too messy when it involves both direct
sums and tensor products, we will replace ⊕ by + when writing down the decomposition.
For example, we write J0|Spin(9) as 1+V9 +VSpin.

The restriction of the adjoint representation f4 of F4 to Spin(9) is isomorphic to:

∧2V9 +VSpin, (4.2)

where ∧2V9 is the adjoint representation of Spin(9).
Now we compute the centralizer of Spin(9). If an element g centralizes Spin(9), then it

must commute with σ ∈ Spin(9). Hence CF4(Spin(9)) is contained in CF4(σ) = Spin(9), thus
it is isomorphic to the center of Spin(9), which is isomorphic to Z/2Z and generated by σ.
Remark 4.3.10. By symmetry, the stabilizer of E2 = diag(0, 1, 0) (resp. E3 = diag(0, 0, 1)) is
also the centralizer of the map [a, b, c ; x, y, z] 7→ [a, b, c ;−x, y,−z] (resp. [a, b, c ;−x,−y, z])
in F4, and is isomorphic to Spin(9).
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4.3.2 (Sp(1)× Sp(3)) /µ∆
2

The subalgebra of OR generated by 1, e1, e2, e4 is isomorphic to the quaternion division
algebra H, and as a real vector space OR can be decomposed as H ⊕ He5. Using this
decomposition, the conjugation on OR becomes

x+ ye5 7→ x− ye5, for all x, y ∈ H.

As JR = Herm3(OR) is the space of “Hermitian” matrices in M3(OR), we embed the space
Herm3(H) of “Hermitian” matrices in M3(H) into JR via our identification of H as a subal-
gebra of OR. Then we have the following isomorphism of vector spaces:

Herm3(H)⊕H3 → JR,

(M,a = (a1, a2, a3)) 7→M + [0, 0, 0 ; a1e5, a2e5, a3e5].

With this identification, we have an involution γ in F4 defined as

γ(M,a) = (M,−a).

Proposition 4.3.11. [Yok09, Theorem 2.11.2] Let ϕ : Sp(1) × Sp(3) → GL(JR) be the
morphism defined as

ϕ(p,A) (M,a) =
(
AMA−1, paA−1

)
, for M ∈ Herm3(H), a ∈ H3.

Then the kernel of ϕ is the diagonal subgroup µ∆
2 generated by γ, and the image of ϕ is

CF4(γ). In particular, ϕ induces an isomorphism:

(Sp(1)× Sp(3)) /µ∆
2 ' CF4(γ).

From now on we refer to the regular connected subgroup CF4(γ) as (Sp(1)× Sp(3)) /µ∆
2 .

The restriction of the irreducible representation J0 of F4 to this subgroup is isomorphic
to

St⊗ V6 + 1⊗ V14, (4.3)

where St is the 2-dimensional standard representation of Sp(1) ' SU(2), V6 is the standard 6-
dimensional representation of Sp(3) and V14 is the 14-dimensional irreducible representation
of Sp(3) which satisfies ∧2V3 ' V14 ⊕ 1. The first component St⊗V6 is realized on H3 and
the second component 1⊗ V14 is realized on the trace-zero part of Herm3(H).

The restriction of the adjoint representation f4 of F4 to (Sp(1)× Sp(3)) /µ∆
2 is isomorphic

to

Sym2 St⊗ 1+ St⊗ V′
14 + 1⊗ Sym2 V6, (4.4)

where V′
14 is another 14-dimensional irreducible representation of Sp(3).

By a similar argument in the case of Spin(9), the centralizer of (Sp(1)× Sp(3)) /µ∆
2 in F4

is isomorphic to Z((Sp(1)× Sp(3)) /µ∆
2 ) ' Z/2Z. It is generated by the involution γ, which

corresponds to (−1, 1) in Z(Sp(1)× Sp(3)) ' µ2 × µ2.
Remark 4.3.12. It may help to notice that there are exactly two conjugacy classes of involu-
tions in F4, whose centralizers in F4 are Spin(9) and (Sp(1)× Sp(3)) /µ∆

2 respectively.
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4.3.3 (SU(3)× SU(3)) /µ∆
3

Take ω = −1+
√
−3

2
and identify the center of SU(3) with µ3 by identifying ω with the

scalar matrix ωI3. Then the diagonal subgroup µ∆
3 ⊂ SU(3)× SU(3) is generated by (ω, ω).

By [Yok09, Theorem 2.12.2], the centralizer in F4 of an order 3 element in F4 is isomorphic
to (SU(3)× SU(3)) /µ∆

3 . As before, by an abuse of language we will refer to this subgroup
as (SU(3)× SU(3)) /µ∆

3 . Notice that the roots of the first copy of SU(3) are short roots of
F4, and those of the second copy are long roots of F4.

Since SU(3) admits an outer automorphism, this unique (up to conjugacy) 2A2-type
subgroup (SU(3)× SU(3)) /µ∆

3 of F4 has two embeddings into F4 which are not conjugate.
The restrictions of the irreducible representation J0 along those embeddings are isomorphic
to

sl3 ⊗ 1+V3 ⊗ V′
3 +V′

3 ⊗ V3 (4.5)

and

sl3 ⊗ 1+V3 ⊗ V3 +V′
3 ⊗ V′

3 (4.6)

respectively. Here V3 is the standard 3-dimensional representation of SU(3), V′
3 is the dual

representation of V3, and sl3 is the adjoint representation of SU(3).
The restriction of the adjoint representation f4 of F4 to (SU(3)× SU(3)) /µ∆

3 is isomorphic
to

sl3 ⊗ 1+ 1⊗ sl3 + Sym2 V3 ⊗ V′
3 + Sym2 V′

3 ⊗ V3 (4.7)

or

sl3 ⊗ 1+ 1⊗ sl3 + Sym2 V3 ⊗ V3 + Sym2 V′
3 ⊗ V′

3. (4.8)

Again, we have an isomorphism CF4((SU(3)× SU(3)) /µ∆
3 ) ' Z/3Z.

4.3.4 G2 × SO(3)

We define an injective morphism ι : G2 × SO(3) ↪→ GL(JR) by

ι(g,O)[a, b, c ; x, y, z] = O[a, b, c ; g(x), g(y), g(z)]O−1, for all a, b, c ∈ R, x, y, z ∈ OR, (4.9)

by viewing O ∈ SO(3) as an element in JR = Herm3(OR) with entries in R. This morphism
is well-defined since real numbers R is the center of the octonion division algebra OR. For
any g ∈ G2 and O ∈ SO(3), the linear automorphism ι(g,O) preserves the cubic form det
and the polarization I, thus ι induces an embedding of G2 × SO(3) into F4. In the sequel we
will refer to the image of ι as G2 × SO(3).

The restriction of the irreducible representation J0 to G2 × SO(3) is isomorphic to

V7 ⊗ Sym2 St + 1⊗ Sym4 St, (4.10)

where V7 is the fundamental 7-dimensional representation of G2 (the trace-zero part of
OC) and St denotes the standard 2-dimensional representation of SU(2). Here we use the
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exceptional isomorphism SO(3) ' PSU(2) = SU(2)/µ2 to view odd dimensional irreducible
representations Sym2n St, n ∈ N of SU(2) as irreducible representations of SO(3). The first
component V7 ⊗ Sym2 St is realized on the space

{[0, 0, 0 ; x, y, z] | x, y, z ∈ OR,Tr(x) = Tr(y) = Tr(z) = 0} ,

and the second component 1⊗ Sym4 St is realized on the space

{[a, b, c ; x, y, z] | a, b, c, x, y, z ∈ R, a+ b+ c = 0} .

The restriction of the adjoint representation f4 of F4 to G2 × SO(3) is isomorphic to

g2 ⊗ 1+V7 ⊗ Sym4 St + 1⊗ Sym2 St, (4.11)

where g2 is the adjoint representation of G2.

Proposition 4.3.13. The centralizer of G2 × SO(3) in F4 is trivial.
Proof. Let g be an element in CF4(G2 × SO(3)). Because the image of diag(1,−1,−1) ∈
SO(3) in F4 is the involution σ defined in §4.3.1, g lies in CF4(σ), thus it stabilizes E1.
By Remark 4.3.10, we also have g stabilizes E2 and E3 respectively. According to [Ada96,
Theorem 16.7(iii), Lemma 15.15], g is an element of the form

[a, b, c ; x, y, z] 7→ [a, b, c ;α(x), β(y), γ(z)], for all a, b, c ∈ R, x, y, z ∈ OR,

where α, β, γ ∈ SO(OR) satisfy

α(x)β(y) = γ(xy) for all x, y ∈ OR. (4.12)

The image of
(

1 0 0
0 0 1
0 −1 0

)
∈ SO(3) in F4 is the map

[a, b, c ; x, y, z] 7→ [a, c, b ;−x,−z, y].

The fact that it commutes with g implies that α(x) = α(x) and β(x) = γ(x) for all x ∈ OR.
By symmetry we get α = β = γ and (4.12) shows that

α(x)α(y) = α(xy) = α(xy) = α(xy), for all x, y ∈ OR.

Hence α ∈ G2 and we have proved that CF4(SO(3)) = G2, thus the centralizer of G2×SO(3)
in F4 is the center of G2, which is trivial.

4.3.5 The principal PSU(2)

The image of the principal embedding from SU(2) into F4, in the sense of [CM92, Theorem
4.1.6], is also a maximal proper connected subgroup of F4. The restriction of the irreducible
representation J0 to this SU(2) is isomorphic to

Sym8 St + Sym16 St,

where St is the standard 2-dimensional representation of SU(2). This implies that the image
is isomorphic to PSU(2), and we call it the principal PSU(2) of F4.

By the general property of principal embeddings, its centralizer is the center of F4. It is
well-known that the center of F4 is trivial.

35



4.4 Classification of A1-subgroups
In this subsection we will classify A1-subgroups of F4, i.e. subgroups that are isomorphic

to SU(2) or PSU(2). By [Dyn57, Theorem 9.3] every A1-subgroup X of F4 is either the
principal PSU(2) or an R-subgroup, i.e. X is contained in some proper regular subgroup of
F4. When X is an R-subgroup, up to conjugacy it is contained in one of the three regular
maximal proper connected subgroups of F4 we have found in §4.3. All these three regular
subgroups arise from classical groups, thus their A1-subgroups are well-known.

By Proposition 4.2.1, a conjugacy class of A1-groups of F4 is determined uniquely by the
restriction of the 26-dimensional representation J0 to it.

Notation 4.4.1. An isomorphism class of n-dimensional representation of SU(2) gives a
partition of the integer n. We will use the notation [NkN , (N − 1)kN−1 , . . . , 2k2 , 1k1 ], where
kN 6= 0 and

∑N
i=1 iki = n, for a partition of n. For example, the restriction of J0 to the

principal PSU(2) is isomorphic to Sym8 St + Sym16 St, thus we index this A1-subgroup by
the partition [17, 9] of dimJ0 = 26.

4.4.1 A1-subgroups of Spin(9)

We start from A1-subgroups of SO(9). According to [CM92, Theorem 5.1.2], the conju-
gacy classes of morphisms SU(2) → SO(9) are in bijection with partitions of 9 in which each
even number appears even times.

Lemma 4.4.2. (1) There are 12 different conjugacy classes of A1-subgroups of Spin(9),
which correspond to the following partitions of 9:

[9], [7, 12], [5, 3, 1], [5, 22], [5, 14], [42, 1], [33], [32, 13], [3, 22, 12], [3, 16], [24, 1], [22, 15].

(2) There are 10 different conjugacy classes of A1-subgroups of F4 that are contained in
the subgroup Spin(9) given in §4.3.1. The restrictions of the 26-dimensional irreducible
representation J0 of F4 to these A1-subgroups correspond to the following partitions of 26:

[11, 9, 5, 1], [73, 15], [53, 33, 12], [36, 18],

[52, 42, 3, 22, 1], [5, 44, 15], [42, 33, 24, 1], [33, 26, 15], [3, 28, 17], [26, 114].
(4.13)

Proof. By the lifting property of covering maps and the fact that SU(2) is simply connected,
every A1-subgroup of SO(9) is lifted uniquely to an A1-subgroup of Spin(9). The assertion
(1) follows directly from [CM92, Theorem 5.1.2], and the assertion (2) follows from the
equivalence (4.1).

The A1-subgroups in the first row of (4.13) are isomorphic to PSU(2) and the A1-
subgroups in the second row are isomorphic to SU(2).

4.4.2 A1-subgroups of (Sp(1)× Sp(3)) /µ∆
2

We apply the same argument for A1-subgroups of (Sp(1)× Sp(3)) /µ∆
2 . By [CM92, The-

orem 5.1.3], the set of conjugacy classes of morphisms SU(2) → Sp(3) are in bijection with
partitions of 6 in which each odd number appears even times.
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Lemma 4.4.3. (1) There are 7 different conjugacy classes of A1-subgroups of Sp(3), which
correspond to the following partitions of 6:

[6], [4, 2], [4, 12], [32], [23], [22, 12], [2, 14].

(2) There are 11 different conjugacy classes of A1-subgroups of F4 that are contained in
the subgroup (Sp(1)× Sp(3)) /µ∆

2 given in §4.4.2. The restrictions of the 26-dimensional
irreducible representation J0 of F4 to these A1-subgroups correspond to the following partitions
of 26:

[9, 7, 52], [53, 33, 12], [5, 37], [36, 18],

[9, 62, 5], [52, 42, 3, 22, 1], [5, 44, 15], [5, 42, 33, 22], [33, 26, 15], [3, 28, 17], [26, 114].
(4.14)

Proof. The assertion (1) follows directly from [CM92, Theorem 5.1.3]. A morphism from
SU(2) to (Sp(1)× Sp(3)) /µ∆

2 arises from the product of two morphisms SU(2) → Sp(1) and
SU(2) → Sp(3). The assertion (2) follows from the equivalence (4.3).

The A1-subgroups in the first row of (4.14) are isomorphic to PSU(2) and the A1-
subgroups in the second row are isomorphic to SU(2).

4.4.3 A1 subgroups of (SU(3)× SU(3)) /µ∆
3

The restriction of the standard representation V3 of SU(3) to an A1-subgroup of SU(3)
can only be [3] or [2, 1]. By the equivalences (4.5) and (4.8), we have the following result:

Lemma 4.4.4. There are 8 different conjugacy classes of A1-subgroups of F4 that are con-
tained in the subgroup (SU(3)× SU(3)) /µ∆

3 given in §4.3.3. The restrictions of the 26-
dimensional irreducible representation J0 of F4 to these A1-subgroups correspond to the
following partitions of 26:

[53, 33, 12], [5, 37], [36, 18]

[5, 42, 33, 22], [42, 33, 24, 1], [33, 26, 15], [3, 28, 17], [26, 114].
(4.15)

The A1-subgroups in the first row of (4.15) are isomorphic to PSU(2) and subgroups in
the second row are isomorphic to SU(2).

4.4.4 Conclusion

Now we have enumerated (up to conjugacy) all A1-subgroups of F4 and indexed them by
the restriction of the 26-dimensional irreducible representation J0 of F4.

Proposition 4.4.5. (1) There are 7 conjugacy classes of subgroups of F4 that are isomorphic
to PSU(2), corresponding to the following partitions of 26:

[17, 9], [11, 9, 5, 1], [9, 7, 52], [73, 15], [53, 33, 12], [5, 37], [36, 18].

(2) There are 7 conjugacy classes of subgroups of F4 that are isomorphic to SU(2), corre-
sponding to the following partitions of 26:

[9, 62, 5], [52, 42, 3, 22, 1], [5, 44, 15], [5, 42, 33, 22], [42, 33, 24, 1], [33, 26, 15], [3, 28, 17], [26, 114].
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The theory of Jacobson-Morozov shows that the set of conjugacy classes of morphisms
SU(2) → F4 is in bijection with the set of nilpotent orbits of the semisimple Lie algebra f4.
The nilpotent orbits of f4 are labeled in [CM92, §8.4], and we will use the same labelings for
A1-subgroups of F4:

Label Restriction of J0 Label Restriction of J0 Label Restriction of J0
A1 [26, 114] A2 + Ã1 [42, 33, 24, 1] B3 [73, 15]

Ã1 [3, 28, 17] B2 [5, 44, 15] C3 [9, 62, 5]

A1 + Ã1 [33, 26, 15] Ã2 +A1 [5, 42, 33, 22] F4(a2) [9, 7, 52]

A2 [36, 18] C3(a1) [52, 42, 3, 22, 1] F4(a1) [11, 9, 5, 1]

Ã2 [5, 37] F4(a3) [53, 33, 12] F4 [17, 9]

Table 2: Labels of A1-subgroups of F4

Notation 4.4.6. With Table 2, for a conjugacy class of A1-subgroups of F4, we have two
ways to refer to it. For example, for the conjugacy class of principal PSU(2), we call it the
class [17, 9] or the class with label F4.

4.4.5 Centralizers

The next thing we are going to do is to compute the centralizer, or the neutral component
of the centralizer, of each A1-subgroup of F4. In the following paragraphs, we choose a
representative SU(2) → F4 for each conjugacy class of A1-subgroups, whose image is denoted
by X, and then determine CF4(X) or CF4(X)◦.

The following lemma will be used when computing the centralizer of a subgroup in F4:

Lemma 4.4.7. Let G be the quotient of a Lie group G0 by a finite central subgroup Γ. If H0

is a connected subgroup of G0, whose image in G is denoted by H, then the inverse image of
CG(H) in G0 is CG0(H0) and CG(H) ' CG0(H0)/Γ.

Proof. It suffices to prove that any g0 ∈ G0 whose image g lies in CG(H) centralizes H0. For
any h0 ∈ H0 with image h in H, we have ghg−1h−1 = 1 in G, thus g0h0g−1

0 h−1
0 ∈ Γ. The

continuous map ϕ : H0 → Γ, h0 7→ g0h0g
−1
0 h−1

0 for h0 ∈ H0 must be constant, because H0 is
connected and Γ is discrete as a finite group. The map ϕ sends 1 ∈ H0 to 1 ∈ Γ, thus ϕ ≡ 1,
which implies that g0 centralizes H0 in G0.

In some cases we can not compute the centralizer CF4(X) easily, then we use the following
lemma to determine its neutral component CF4(X)◦:

Lemma 4.4.8. Let H be a connected subgroup of a compact Lie group G, and d the mul-
tiplicity of 1 in the restriction of the adjoint representation g of G to H. If there is a
d-dimensional connected subgroup C of CG(H), then we have CG(H)◦ = C. In particular,
the centralizer CG(H) is a finite group when d = 0.
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Proof. As subalgebras of g, the Lie algebra Lie(CG(H)◦) of CG(H)◦ is contained in

Cg(H) := {X ∈ g |Ad(g)X = X for all g ∈ HC} ,

where HC is the complexification of H. The dimension of Cg(H) equals the multiplicity d of
1 in g|H .

Let c be the complexified Lie algebra of C. We have the inclusions c ⊂ Lie(CG(H)◦) ⊂
Cg(H). Since dim c = d = dimCg(H), these three subspaces of g are equal. It is well known
that a connected Lie group is generated by a neighborhood of the identity element, thus the
connected subgroups C and CG(H)◦ of G coincide.

4.4.5.1 [17, 9] We choose X to be the principal PSU(2) in F4, whose centralizer in F4 is
trivial.

4.4.5.2 [11, 9, 5, 1] We choose X to be the principal PSU(2) of the Spin(9) given in §4.3.1.
The restriction of the adjoint representation f4 of F4 to X corresponds to the partition
[15, 112, 7, 5, 3] of 52, which implies that CF4(X) is a finite group by Lemma 4.4.8.

4.4.5.3 [9, 7, 52] We choose X to be the principal PSU(2) of the (Sp(1)× Sp(3)) /µ∆
2 given

in §4.3.2. The restriction of the adjoint representation f4 to X corresponds to the partition
[112, 9, 7, 5, 33] of 52, thus CF4(X) is a finite group by Lemma 4.4.8.

4.4.5.4 [73, 15] We choose X to be the principal PSU(2) of the factor G2 in the subgroup
G3×SO(3) given in §4.3.4. The other factor SO(3) of G2×SO(3) centralizes this A1-subgroup
X. The restriction of the adjoint representation f4 of F4 to X corresponds to the partition
[11, 75, 3, 13] of 52, thus CF4(X)◦ is the SO(3) in G2 × SO(3) by Lemma 4.4.8, which is in
the class [5, 37] and labeled by Ã2.

4.4.5.5 [53, 33, 12] We choose X to be the principal PSU(2) of the (SU(3)× SU(3)) /µ∆
3

given in §4.3.3. The restriction of the adjoint representation f4 of F4 to X corresponds to
the partition [72, 54, 36] of 52, thus CF4(X) is a finite group by Lemma 4.4.8. The center of
(SU(3)× SU(3)) /µ∆

3 , which is a cyclic group of order 3, is contained in CF4(X).

4.4.5.6 [5, 37] We choose X to be the factor SO(3) in the subgroup G2×SO(3) of F4 given
in §4.3.4. In the proof of Proposition 4.3.13, we have shown that the centralizer CF4(X) is
the other factor G2.

4.4.5.7 [36, 18] We choose X to be the principal PSU(2) of the second copy of SU(3) in
the subgroup (SU(3)× SU(3)) /µ∆

3 given in §4.3.3. The first copy of SU(3) centralizes X and
has dimension 8. The restriction of the adjoint representation f4 of F4 to X corresponds to
the partition [5, 313, 18] of 52, thus CF4(X)◦ is the first copy of SU(3) in (SU(3)× SU(3)) /µ∆

3

by Lemma 4.4.8, whose roots are short roots of F4.
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4.4.5.8 [9, 62, 5] We choose X0 to be the principal SU(2) of Sp(3), and X to be the image
of X0 in the subgroup (Sp(1)× Sp(3)) /µ∆

2 given in §4.3.2. The group (Sp(1)× Sp(3)) /µ∆
2 is

defined as CF4(γ), where γ is an involution in F4 and is the image of (1,−I3) ∈ Sp(1)×Sp(3)
in the quotient group.

Since X contains the element γ, the centralizer of X in F4 is contained in CF4(γ) =
(Sp(1)× Sp(3)) /µ∆

2 , thus CF4(X) = C(Sp(1)×Sp(3))/µ∆2
(X). By Lemma 4.4.7, we have:

C(Sp(1)×Sp(3))/µ∆2
(X) = CSp(1)×Sp(3)(1×X0)/µ

∆
2 = (Sp(1)× Z(Sp(3)))/µ∆

2 ' Sp(1).

Hence CF4(X) is an A1-subgroup in the class [26, 114] and labeled by A1.

4.4.5.9 [52, 42, 3, 22, 1] We choose X0 to be the image of

SU(2) ↪→ Sp(1)× Sp(2) ↪→ Sp(3),

where the first arrow is the principal morphism of Sp(1) × Sp(2), and the second is de-
fined as (x,A) 7→ ( x 0

0 A ), for any x ∈ Sp(1), A ∈ Sp(2). Let X be the image of X0 in
(Sp(1)× Sp(3)) /µ∆

2 = CF4(γ).
The element γ corresponds to (1,−I3) in Sp(1) × Sp(3), thus it is contained in X, so

CF4(X) ⊂ CF4(γ) and CF4(X) = C(Sp(1)×Sp(3))/µ∆2
(X). Again by Lemma 4.4.7, we have:

C(Sp(1)×Sp(3))/µ∆2
(X) = CSp(1)×Sp(3) (1×X0) /µ

∆
2 = (Sp(1)× 〈γ1〉 × 〈γ2〉) /µ∆

2 ,

where γ1 =
(

−1 0 0
0 1 0
0 0 1

)
and γ2 =

(
1 0 0
0 −1 0
0 0 −1

)
are two order 2 elements in Sp(3). Hence CF4(X)

is the product of Sp(1) and an order 2 group, and this A1-subgroup Sp(1) is in the class
[26, 114] and labeled by A1.

4.4.5.10 [5, 44, 15] We choose a morphism:

SU(2) ↪→ Spin(5) ↪→ Spin(5)× Spin(4) → Spin(9) ↪→ F4,

where the first arrow is the principal morphism of Spin(5), and the subgroup Spin(9) of F4

is defined as CF4(σ) in §4.3.1. This morphism is injective since the factor Spin(5) has zero
intersection with the kernel of Spin(5)× Spin(4) → Spin(9), and we denote its image by X.

The element σ defined in §4.3.1 is contained in X, hence the centralizer of X in F4 is
contained in Spin(9), thus CF4(X) = CSpin(9)(X). Denote the natural projection Spin(9) →
SO(9) by p. The centralizer of p(X) in SO(9) is SO(4), the image of Spin(4) under p. By
Lemma 4.4.7, we have

CSpin(9)(X) = p−1(SO(4)) = Spin(4) ' SU(2)× SU(2),

and as a result CF4(X) is the product of two A1-subgroups in the class [26, 114].
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4.4.5.11 [5, 42, 33, 22] We choose an embedding:

SU(2) ↪→ Sp(1)× SO(3) ↪→ Sp(1)× Sp(3),

where the first arrow is the principal morphism of Sp(1)×SO(3), and the embedding SO(3) →
Sp(3) is given by viewing an orthogonal 3 × 3 matrix as an matrix in GL(3,H) preserving
the standard Hermitian form on H3. Let X0 be the image of this embedding, and X the
image of X in the subgroup (Sp(1)× Sp(3)) /µ∆

2 = CF4(γ) of F4 given in §4.3.2.
The group X0 contains (−1, I3), thus the element γ is contained in X. So the centralizer

CF4(X) is contained in CF4(γ) and CF4(X) = C(Sp(1)×Sp(3))/µ∆2
(X). By Lemma 4.4.7, we have

C(Sp(1)×Sp(3))/µ∆2
(X) =

(
Z(Sp(1))× CSp(3)(SO(3))

)
/µ∆

2 ' CSp(3) (SO(3)) .

A 3×3 matrix in Sp(3) commutes with all elements in SO(3) if and only if it is a scalar matrix,
thus it must be of the form h · I3 for some norm 1 element h ∈ H. Hence CF4(X) ' Sp(1) is
an A1-subgroup in the class [33, 26, 15] and labeled by A1 + Ã1.

4.4.5.12 [42, 33, 24, 1] We choose a morphism:

Spin(3) ↪→ Spin(3)× Spin(3)× Spin(3) → Spin(9) = CF4(σ) ↪→ F4,

where the first arrow is the diagonal embedding. This is also an embedding and we denote
its image in F4 by X.

Again we have CF4(X) = CSpin(9)(X), and by Lemma 4.4.7, the centralizer of X in Spin(9)
is the inverse image in Spin(9) of the subgroup

a11I3 a12I3 a13I3
a21I3 a22I3 a23I3
a31I3 a32I3 a33I3

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

 ∈ SO(3)


of SO(9). Hence CF4(X) ' Spin(3) is also an A1-subgroup in the class [42, 33, 24, 1].

4.4.5.13 [33, 26, 15] We denote by X0 the image of Sp(1) ↪→ Sp(3) given by h 7→ hI3, and
by X the image of X under the embedding of Sp(3) into the group (Sp(1)× Sp(3)) /µ∆

2 =
CF4(γ) given in §4.3.2.

The element γ = (1,−I3) (modulo µ∆
2 ) is contained in X, so the centralizer CF4(X)

equals C(Sp(1)×Sp(3))/µ∆2
(X). By Lemma 4.4.7, we have

C(Sp(1)×Sp(3))/µ∆2
(X) = CSp(1)×Sp(3)(1×X0)/µ

∆
2 =

(
Sp(1)× CSp(3)(X0)

)
/µ∆

2 .

A 3 × 3 matrix A ∈ Sp(3) commutes with hI3 for all norm 1 quaternions h, if and only
if all entries of A are real. Hence CSp(3)(X0) = GL(3,R) ∩ Sp(3) = O(3), and as a result
CF4(X) ' Sp(1)×SO(3) is the product of two A1-subgroups in the classes [26, 114] and [5, 37]

respectively. These two A1-subgroups are labeled by A1 and Ã2 respectively.
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4.4.5.14 [3, 28, 17] We choose a morphism:

Spin(3) ↪→ Spin(3)× Spin(6) → Spin(9) = CF4(σ) ↪→ F4,

which is injective, and denote by X its image in F4.
The element σ is contained in X, thus CF4(X) = CSpin(9)(X). Again by Lemma 4.4.7,

this centralizer is the group Spin(6) in the morphism we choose.

4.4.5.15 [26, 114] We choose X to be the factor Sp(1) in the (Sp(1)× Sp(3)) /µ∆
2 given in

§4.3.2. Using Lemma 4.4.7, we obtain that the centralizer CF4(X) is the other factor Sp(3).

4.5 Connected simple subgroups
In this subsection, we will classify connected simple subgroups of F4 whose ranks are

larger than 1, and then determine their centralizers in F4.
Let H be a proper connected simple subgroup of F4 whose rank is larger than 1. It is (up

to conjugacy) contained in one of the following four maximal proper connected subgroups
classified in §4.3:

Spin(9), (Sp(1)× Sp(3)) /µ∆
2 , (SU(3)× SU(3)) /µ∆

3 ,G2 × SO(3).

Moreover, by [Dyn57, Theorem 14.2] the group F4 has no simple S-subgroup except the
principal PSU(2), so we have:

Lemma 4.5.1. Let H be a proper connected simple subgroup of F4 with rankH ≥ 2, then
up to conjugacy H is contained in one of the following fixed subgroups of F4:

Spin(9), Sp(3), (SU(3)× SU(3)) /µ∆
3 .

The possible Lie types for H are:

A2,A3,A4,B2,B3,B4,C3,C4,D4,G2.

Proposition 4.5.2. There are no connected subgroups of F4 whose Lie type is A4 or C4.

Proof. Suppose that F4 admits a connected subgroupH with type A4 or C4. Since rank(H) =
4, by Lemma 4.5.1 there exists an embedding of H into Spin(9).

The case that H is of type C4 is impossible, because dimH = 36 = dimSpin(9) but H
and Spin(9) have different Lie types. Hence H has type A4. The morphism H ↪→ Spin(9) →
SO(9) gives H a self-dual 9-dimensional representation of H, which leads to contradiction
since the A4-type group H does not admit such a representation.

4.5.1 Cases except A2

In the remaining possible Lie types for connected simple subgroups of F4, the type A2 is
more complicated. So we first look at the other types:
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Proposition 4.5.3. (1) For each type among

A3,B2,B3,B4,C3,D4,G2,

there exists a simply-connected subgroup of F4 with this type.
(2) Let H be a connected compact Lie group such that it admits an embedding into F4 and
its Lie type is among

A3,B2,B3,B4,C3,D4,G2.

Then H is simply-connected and the embedding H ↪→ F4 is unique up to conjugacy.

Before proving this proposition case by case, we explain our strategy. Fixing a Lie type,
we first construct an embedding φ0 from the simply-connected compact Lie group H0 of the
given type into F4. We claim that to prove Proposition 4.5.3(2) for this Lie type, it suffices
to show that for any connected simple compact Lie group H of the same type with H0,
i.e. H is isomorphic to the quotient of H0 by a finite central subgroup, and any embedding
φ : H → F4, the restriction of the 26-dimensional irreducible representation J0 along φ is
unique, up to equivalence of H0-representations. Here we view the restriction of J0 along
φ : H → F4 as a representation of H0 by the composition with a central isogeny H0 → H.

Proof of the claim. For a connected compact Lie group H of the same Lie type as H0 and
an embedding φ : H ↪→ F4, we can lift φ to a morphism φ ◦ i : H0 → F4 via a central
isogeny i : H0 → H. This morphism φ ◦ i is conjugate to φ0 by the uniqueness of J0|H0 and
Proposition 4.2.1, thus i is injective, which implies that H is also simply-connected. For any
two embeddings φ, φ′ : H ↪→ F4, applying Proposition 4.2.1 to φ ◦ i and φ′ ◦ i, we have φ ◦ i
and φ′ ◦ i are conjugate in F4, thus φ and φ′ are conjugate.

4.5.1.1 B4 In this case H0 ' Spin(9) and we take φ0 to be H0 ' Spin(9) ↪→ F4, where
Spin(9) ↪→ F4 is constructed in §4.3.1.

For any embedding φ from a B4-type connected compact Lie group H into F4, by
Lemma 4.5.1 the image Im(φ) (up to conjugate) is a subgroup of the Spin(9) in F4, thus φ
factors through an embedding H → Spin(9). This embedding must be an isomorphism, so
the restrictions of J0 along φ0 and φ are equivalent as H0-representations.

4.5.1.2 D4 In this case H0 ' Spin(8) and we take φ0 to be the composition of the natural
embedding Spin8 ↪→ Spin(9) with Spin(9) ↪→ F4.

For any embedding φ from a D4-type connected compact Lie group H into F4, by
Lemma 4.5.1, φ (up to conjugacy) factors through an embedding H → Spin(9). The restric-
tion of the 9-dimensional irreducible representation V9 to H is isomorphic to either 1+V8 or
1+V+

Spin or 1+V−
Spin, where V8 is the standard 8-dimensional representation of Spin(8), and

V±
Spin are two 8-dimensional spinor representations of Spin(8). For those three possibilities,

we obtain the same equivalence class of J0|H , which is equivalent to 1⊕2+V8+V+
Spin+V−

Spin

as H0-representations. This representation is stable under the outer automorphisms of H0,
so the restriction of J0 along φ is unique, up to equivalence of H0-representations.
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4.5.1.3 A3 In this case H0 ' SU(4), and we take φ0 to be the composition of the natural
embedding SU(4) ' Spin(6) ↪→ Spin(9) with Spin(9) ↪→ F4.

For any embedding φ from a A3-type connected compact Lie group H into F4, by
Lemma 4.5.1, φ (up to conjugacy) factors through an embedding from H to Sp(3) or Spin(9).

If φ factors through Sp(3), then the image of φ gives a A3-type subgroup of Sp(3). This
subgroup of Sp(3) must be regular, but this contradicts with the Borel-de Siebenthal theory.

If φ factors through Spin(9), the standard representation V9 of Spin(9) gives a self-dual
9-dimensional representation of H. Up to equivalence, there are two possibilities for the
restriction of V9 to H:

1⊕3 + ∧2V4 or 1+V4 +V′
4,

where V4 is the standard 4-dimensional representation of SU(4) and V′
4 is its dual. For both

cases, the restriction of the irreducible representation J0 of F4 along φ is isomorphic to

1⊕4 +V⊕2
4 + (V′

4)
⊕2 + ∧2V4.

This representation is stable under the outer automorphism of H0, so the restriction of J0
along φ is unique, up to equivalence of H0-representations.

4.5.1.4 B3 In this case H0 ' Spin(7), and we take φ0 to be the composition of the natural
embedding Spin(7) ↪→ Spin(9) with Spin(9) ↪→ F4.

For any embedding φ from a B3-type connected compact Lie group H into F4, by
Lemma 4.5.1 and the Borel-de Siebenthal theory, φ (up to conjugacy) factors through an
embedding from H to Spin(9). The restriction of the standard representation V9 of Spin(9)
to H must be isomorphic to either 1⊕2 + V7 or 1 + VSpin, where V7 is the standard 7-
dimensional representation of Spin(7), and VSpin is the 8-dimensional spinor representation
of Spin(7). For both cases, the restriction of the irreducible representation J0 of F4 along φ
is isomorphic to

1⊕3 +V7 +V⊕2
Spin.

Hence the restriction of J0 along φ is unique, up to equivalence of H0-representations.

4.5.1.5 C3 In this caseH0 ' Sp(3), and we take φ0 to be Sp(3) ↪→ (Sp(1)× Sp(3)) /µ∆
2 ↪→

F4, where the subgroup (Sp(1)× Sp(3)) /µ∆
2 is given in §4.3.2.

For any embedding φ from a C3-type connected compact Lie group H into F4, by
Lemma 4.5.1, φ (up to conjugacy) factors through a central-kernel morphism from H0 to
Sp(3) or Spin(9).

If φ factors through Spin(9), then the standard representation V9 of Spin(9) induces an
orthogonal 9-dimensional representation of Sp(3). However, each non-trivial irreducible or-
thogonal representation of Sp(3) has dimension larger than 9, which leads to a contradiction.

If φ factors through Sp(3), then the embedding H → Sp(3) must be an isomorphism. This
implies that the restriction of the irreducible representation J0 of F4 along φ is isomorphic
to V⊕2

6 + V14, where V6 and V14 stand for the same representations in (4.3). Hence the
restriction of J0 along φ is unique, up to equivalence of H0-representations.
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4.5.1.6 B2 In this case H0 ' Sp(2) ' Spin(5), and we take φ0 to be the composi-
tion of the natural embedding Sp(2) ↪→ Sp(3) ↪→ (Sp(1)× Sp(3)) /µ∆

2 with the embedding
(Sp(1)× Sp(3)) /µ∆

2 ↪→ F4 given in §4.3.2.
For any embedding φ from a B2-type connected compact Lie group H into F4, by

Lemma 4.5.1 and the Borel-de Siebenthal theory, φ (up to conjugacy) factors through an
embedding from H to Sp(3) or Spin(9).

If φ factors through Sp(3), then the restriction of the standard representation V6 of Sp(3)
to H must be isomorphic to 1⊕2 + V4, where V4 is the standard 4-dimensional symplectic
representation of Sp(2). The restriction of the irreducible representation J0 along φ is iso-
morphic to 1⊕5+V⊕4

4 +V5, where V5 is the standard 5-dimensional orthogonal representation
of Spin(5).

If φ factors through Spin(9), then the restriction of the standard representation V9 to H
must be isomorphic to 1⊕4 +V5 or 1+V⊕2

4 . For these two possibilities, the restriction of J0
along φ is isomorphic to 1⊕5 + V⊕4

4 + V5. Hence the restriction of J0 along φ is unique, up
to equivalence of H0-representations.

4.5.1.7 G2 In this case H0 ' G2, and we take φ0 to be the embedding G2 ↪→ G2 ×
SO(3) ↪→ F4, as given in §4.3.4.

Combining Lemma 4.5.1 and the fact that all non-trivial representations of G2 have
dimension larger than 6, any embedding φ from a G2-type connected compact Lie group H
into F4 (up to conjugacy) factors through an embedding from H to Spin(9). The restriction
of the standard representation V9 of Spin(9) to H must be isomorphic to 1⊕2 + V7, where
V7 is the same as in (4.10). So the restriction of the representation J0 of F4 along φ must
be isomorphic to 1⊕5 +V⊕3

7 . Hence the restriction of J0 along φ is unique, up to equivalence
of H0-representations.

4.5.2 The case A2

For the Lie type A2, our idea is the same with the proof of Proposition 4.5.3, but this
time we have several conjugacy classes of embeddings from a A2-type group to F4.

Proposition 4.5.4. (1) There are 3 conjugacy classes of embeddings from SU(3) to F4,
(2) There is a unique conjugacy class of embeddings from PSU(3) = SU(3)/Z(SU(3)) to F4.

Proof. By Lemma 4.5.1, any embedding φ from a connected A2-type compact Lie group H
to F4 (up to conjugacy) factors through Spin(9) or Sp(3) or (SU(3)× SU(3)) /µ∆

2 .
We start from the case that φ factors through (SU(3)× SU(3)) /µ∆

3 . Fix an embedding ι :
(SU(3)× SU(3)) /µ∆

3 ↪→ F4 such that the restriction of the irreducible representation J0 of F4

along this embedding is isomorphic to (4.6). We denote the outer automorphism of SU(3) by
θ. It is easy to classify the conjugacy classes of embeddings ψ : H ↪→ (SU(3)× SU(3)) /µ∆

3 ,
where H is a connected A2-type compact Lie group, i.e. H ' SU(3) or PSU(3). We list the
conjugacy classes as follows:
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Index H ψ The restriction of J0 along φ = ι ◦ ψ
1 SU(3) g 7→ (g, 1) (V3 +V′

3)
⊕3 + sl3

2 SU(3) g 7→ (1, g) 1⊕8 + (V3 +V′
3)

⊕3

3 PSU(3) g 7→ (g, g) 1⊕2 + sl⊕3
3

4 SU(3) g 7→ (g, θ(g)) V3 +V′
3 + Sym2 V3 + Sym2 V′

3 + sl3

Table 3: Embeddings from A2-type connected compact Lie groups to (SU(3)× SU(3))/µ∆
3

The representations of SU(3) appearing in this table have been explained in §4.3.3. If we
choose the embedding ι to be the one corresponding to (4.5), then by Proposition 4.2.1 we
get the same conjugacy classes of embeddings.

If φ factors through Sp(3), the standard representation V6 of Sp(3) gives a self-dual
6-dimensional representation of H, thus the restriction of V6 to H must be isomorphic to
V3 +V′

3. So the restriction of J0 to H is isomorphic to (V3 +V′
3)

⊕3 + sl3.
If φ factors through Spin(9), the standard representation V9 of Spin(9) gives a self-dual

9-dimensional representation of H, thus the restriction of V9 to H must be isomorphic to
1⊕3 + V3 + V′

3 or 1 + sl3. For the first case, the restriction of J0 to H is isomorphic to
1⊕8 + (V3 + V′

3)
⊕3, and for the second case, the restriction of J0 to H is isomorphic to

1⊕2 + sl⊕3
3 .

In conclusion, combining Proposition 4.2.1 with our analysis on the restriction of J0, we
get that every embedding from a connected A2-type compact Lie group to F4 is conjugate
to one of the embeddings φ = ι ◦ ψ in Table 3.

4.5.3 Centralizers

Similarly with the arguments in §4.4.5, using Lemma 4.4.7 and Lemma 4.4.8, for each
conjugacy class of embeddings from a connected simple compact Lie group to F4, we can
determine its centralizer in F4:

• Type B4: the centralizer is a cyclic group of order 2.
• Type D4: the centralizer is isomorphic to Z/2Z× Z/2Z.
• Type A3: the centralizer is an A1-subgroup in the class [3, 28, 17], which is labeled by

Ã1.
• Type B3: the centralizer is the product of a rank 1 torus with a cyclic group of order

2.
• Type C3: the centralizer is an A1-subgroup in the class [26, 114], which is labeled by

A1.
• Type B2: the centralizer is the direct product of two A1-subgroups in the class [26, 114].
• Type G2: the centralizer is an A1-subgroup in the class [5, 37], which is labeled by Ã2.
• Type A2: Let φ : H ↪→ F4 be a representative of a conjugacy class of embeddings listed

in Table 3, which is indexed by a number from 1 to 4.
(1) If φ is indexed by 1, then its centralizer is conjugate to the SU(3) indexed by 2.
(2) If φ is indexed by 2, then its centralizer is conjugate to the SU(3) indexed by 1.
(3) If φ is indexed by 3, then its centralizer is finite and contains an order 3 element.
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(4) If φ is indexed by 4, then its centralizer is a cyclic group of order 3.

4.6 Connected subgroups satisfying certain conditions
After a long journey of classifying conjugacy classes of connected simple subgroups of F4

and computing their centralizers in F4, we are finally able to enumerate all the connected
subgroups H of F4 satisfying our three conditions listed in the beginning of §4.

We first classify all the connected subgroups H of F4 such that CF4(H) is an elementary
finite abelian 2-group, via our classifications in §4.4 and §4.5.
Notation 4.6.1. From now on, for an A1-subgroup of F4, if its conjugacy class corresponds
to the partition p of 26, we will simply denote this A1-subgroup by Ap

1. For example, we will
denote the principal PSU(2) of F4 by A

[17,9]
1 . For an A2-type subgroup of F4, if its conjugacy

class is indexed by n ∈ {1, 2, 3, 4} in §4.5.2 Table 3, then we denote it simply by A
(n)
2 .

Now let H be a connected subgroup of F4 whose centralizer in F4 is an elementary finite
abelian 2-group. Let Φ be the root system of H, and we can write it as a disjoint union of
irreducible root systems:

Φ = Φ1 t · · · t Φs.

We denote by m the number of i ∈ {1, 2, . . . , s} such that Φi ' A1.
Lemma 4.6.2. If s = 1, i.e. H is simple, then H is conjugate to one of the following
subgroups of F4:

F4, Spin(9), Spin(8),A
[17,9]
1 ,A

[11,9,5,1]
1 ,A

[9,7,52]
1 .

Proof. By our computations in §4.4.5 and §4.5.3, we have if the centralizer of H in F4 is
finite, then it must be conjugate to one of the following subgroups of F4:

F4, Spin(9), Spin(8),A
(3)
2 ,A

(4)
2 ,A

[17,9]
1 ,A

[11,9,5,1]
1 ,A

[9,7,52]
1 ,A

[53,33,12]
1 .

According to § 4.4.5.5 and §4.5.3, if H is in the conjugacy class of A
(3)
2 ,A

(4)
2 or A

[53,33,12]
1 ,

then the centralizer of H in F4 contains an element of order 3.
Lemma 4.6.3. If s > 1 and m = 0, then there is no such H satisfying CF4(H) is an
elementary finite abelian 2-group.
Proof. Since s > 1 and m = 0, the irreducible root systems Φ1 and Φ2 both have rank 2 and
s = 2. Hence H must be isomorphic to the quotient of SU(3)×SU(3) by a finite central sub-
group. By our classification in §4.5.2, H is conjugate to the subgroup (SU(3)× SU(3)) /µ∆

3

constructed in §4.3.3. However, the centralizer of this subgroup contains its center, which is
a cyclic group of order 3, so in this case there is no H whose centralizer in F4 is an elementary
finite abelian 2-group.
Lemma 4.6.4. If s = 2 and m ≥ 1, then H is conjugate to one of the following subgroups
of F4: (

A
[26,114]
1 × Sp(3)

)
/µ∆

2 ,
(
A

[3,28,17]
1 × Spin(5)

)
/µ∆

2 ,A
[5,37]
1 ×G2,

A
[73,15]
1 × A

[5,37]
1 ,

(
A

[9,62,5]
1 × A

[26,114]
1

)
/µ∆

2 ,
(
A

[52,42,3,22,1]
1 × A

[26,114]
1

)
/µ∆

2 ,(
A

[5,44,15]
1 × A

[3,28,17]
1

)
/µ∆

2 ,
(
A

[5,42,33,22]
1 × A

[33,26,15]
1

)
/µ∆

2 ,
(
A

[42,33,24,1]
1 × A

[42,33,24,1]
1

)
/µ∆

2 .
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Proof. Since s = 2 and m ≥ 1, up to conjugacy H is of the form (X × H0)/Γ, where X
is an A1-subgroup of F4, H0 is a connected simple subgroup of F4, and Γ is either trivial
or the subgroup µ∆

2 of X × H0. Since the centralizer of H in F4 is an elementary finite
abelian 2-groups, the centralizer of H0 in CF4(X) and the centralizer of X in CF4(X) are
both elementary finite abelian 2-groups.

If rank(H0) > 1, by §4.5.3 we have the following possibilities for the conjugacy class of
H: (

A
[26,114]
1 × Sp(3)

)
/µ∆

2 ,
(
A

[3,28,17]
1 × Spin(5)

)
/µ∆

2 ,A
[5,37]
1 ×G2.

If H0 is also an A1-subgroup of F4, by §4.4.5 we have the following possibilities for the
conjugacy class of H:

A
[73,15]
1 × A

[5,37]
1 ,

(
A

[9,62,5]
1 × A

[26,114]
1

)
/µ∆

2 ,
(
A

[52,42,3,22,1]
1 × A

[26,114]
1

)
/µ∆

2 ,(
A

[5,44,15]
1 × A

[3,28,17]
1

)
/µ∆

2 ,
(
A

[5,42,33,22]
1 × A

[33,26,15]
1

)
/µ∆

2 ,
(
A

[42,33,24,1]
1 × A

[42,33,24,1]
1

)
/µ∆

2 .

Lemma 4.6.5. If s > 2, then H is conjugate to one of the following subgroups of F4:(
A

[26,114]
1 × A

[26,114]
1 × Sp(2)

)
/µ∆

2 ,

A
[5,37]
1 ×

(
A

[33,26,15]
1 × A

[26,114]
1

)
/µ∆

2 ,(
A

[5,44,15]
1 × A

[26,114]
1 × A

[26,114]
1

)
/µ∆

2 ,(
A

[3,28,17]
1 × A

[3,28,17]
1 × A

[3,28,17]
1

)
/〈(1,−1,−1), (−1,−1, 1)〉,

4∏
i=1

A
[26,114]
1 /µ∆

2 :=
(
A

[26,114]
1 × A

[26,114]
1 × A

[26,114]
1 × A

[26,114]
1

)
/µ∆

2 .

Proof. This follows from a similar argument as in the proof of Lemma 4.6.4 and the results
in §4.4.5 and §4.5.3.

In Lemma 4.6.2, Lemma 4.6.3, Lemma 4.6.4 and Lemma 4.6.5, we have enumerated all
the conjugacy classes of connected subgroups H of F4 such that the centralizer of H in F4

is an elementary finite abelian 2-group. There are 20 such conjugacy classes, but some of
them do not satisfy the third condition given in the beginning of §4:

Lemma 4.6.6. If a subgroup H of F4 is conjugate to one of the following subgroups:

A
[11,9,5,1]
1 ,A

[9,7,52]
1 ,

(
A

[3,28,17]
1 × Spin(5)

)
/µ∆

2 ,
(
A

[52,42,3,22,1]
1 × A

[26,114]
1

)
/µ∆

2 ,(
A

[5,44,15]
1 × A

[3,28,17]
1

)
/µ∆

2 ,A
[3,28,17]
1 × A

[3,28,17]
1 × A

[3,28,17]
1 /〈(1,−1,−1), (−1,−1, 1)〉,

then the zero weight appears 4 times in the restriction of the 26-dimensional irreducible
representation J0 of F4 to H.

48



Proof. The restrictions of the representation J0 of F4 to the two A1-subgroups in the list
above can be read from their corresponding partitions. In both cases, the multiplicity of the
zero weight in J0|H is 4.

If H is conjugate to
(
A

[3,28,17]
1 × Spin(5)

)
/µ∆

2 , then the restriction J0|H is isomorphic to(
1⊕2 + Sym2 St

)
⊗ 1+ St⊕2 ⊗ V4 + 1⊗ V5,

in which the zero weight appears 4 times.
If H is conjugate to

(
A

[52,42,3,22,1]
1 × A

[26,114]
1

)
/µ∆

2 , then the restriction J0|H is isomorphic
to (

(Sym4 St)⊕2 + Sym2 St + 1
)
⊗ 1+

(
Sym3 St + St

)
⊗ St,

in which the zero weight appears 4 times.
If H is conjugate to

(
A

[5,44,15]
1 × A

[3,28,17]
1

)
/µ∆

2 , then the restriction J0|H is isomorphic to

1⊗
(
1⊕2 + Sym2 St

)
+
(
Sym3 St⊗ St

)⊕2
+ Sym4 St⊗ 1,

in which the zero weight appears 4 times.
If H is conjugate to A

[3,28,17]
1 × A

[3,28,17]
1 × A

[3,28,17]
1 /〈(1,−1,−1), (−1,−1, 1)〉, then the

restriction J0|H is isomorphic to

1+ (St⊗ St⊗ St)⊕2 + Sym2 St⊗ 1⊗ 1+ 1⊗ Sym2 St⊗ 1+ 1⊗ 1⊗ Sym2 St,

in which the zero weight appears 4 times.

In conclusion, we have proved the following theorem:
Theorem 4.6.7. There are 13 conjugacy classes of proper connected subgroups H of F4

satisfying the following conditions:
(1) The centralizer of H in F4 is an elementary finite abelian 2-group.
(2) The zero weight appears twice in the restriction of the 26-dimensional irreducible rep-

resentation J0 of F4 to H.
These 13 subgroups are:

A
[17,9]
1 , Spin(9), Spin(8),A

[5,37]
1 ×G2,A

[73,15]
1 × A

[5,37]
1 ,

(
A

[26,114]
1 × Sp(3)

)
/µ∆

2 ,(
A

[26,114]
1 × A

[26,114]
1 × Sp(2)

)
/µ∆

2 ,
(
A9,62,5

1 × A
[26,114]
1

)
/µ∆

2 ,
(
A

[5,42,33,22]
1 × A

[33,26,15]
1

)
/µ∆

2 ,(
A

[42,33,24,1]
1 × A

[42,33,24,1]
1

)
/µ∆

2 ,A
[5,37]
1 ×

(
A

[33,26,15]
1 × A

[26,114]
1

)
/µ∆

2 ,(
A

[5,44,15]
1 × A

[26,114]
1 × A

[26,114]
1

)
/µ∆

2 ,

4∏
i=1

A
[26,114]
1 /µ∆

2 .

For the 13 conjugacy classes of subgroups H in Theorem 4.6.7, in the rest of this subsec-
tion we are going to list some information will be used in §6:

• the centralizer CF4(H) of H in F4,
• the restriction of the 26-dimensional irreducible representation J0 to H,
• and the restriction of the adjoint representation f4 of F4 to H.
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4.6.1 A
[17,9]
1

This is the principal PSU(2) of F4, whose centralizer in F4 is trivial. The restriction of
J0 to H corresponds to the partition [17, 9] of 26, and the restriction of f4 to H corresponds
to the partition [23, 15, 11, 3] of 52.

4.6.2 Spin(9)

The centralizer of H in F4 is the center of H, which is isomorphic to Z/2Z.
The restriction of J0 to H is isomorphic to

1+V9 +VSpin,

and the restriction of f4 to H is isomorphic to

∧2V9 +VSpin,

where V9 is the standard representation of Spin(9) and VSpin is the 16-dimensional spinor
representation.

4.6.3
(
A

[26,114]
1 × Sp(3)

)
/µ∆

2

The centralizer of H in F4 is the center of H, which is isomorphic to Z/2Z.
The restriction of J0 to H is isomorphic to

St⊗ V6 + 1⊗ V14,

and the restriction of f4 to H is isomorphic to

Sym2 St⊗ 1+ St⊗ V′
14 + 1⊗ Sym2 V6,

where V6 is the standard 6-dimensional representation of Sp(3), V14 is the 14-dimensional
irreducible representation of Sp(3) that is a sub-representation of ∧2V6, and V′

14 is another
14-dimensional irreducible representation of Sp(3) that is not equivalent to V14. From now
on, we will denote V14 by ∧∗V6, and similarly for the 5-dimensional irreducible representation
of Sp(2).

4.6.4 A
[5,37]
1 ×G2

The centralizer of H in F4 is trivial.
The restriction of J0 to H is isomorphic to

Sym2 St⊗ V7 + Sym4 St⊗ 1,

and the restriction of f4 to this subgroup is isomorphic to

1⊗ g2 + Sym2 St⊗ 1+ Sym4 St⊗ V7,

where V7 is the 7-dimensional irreducible representation of G2, and g2 is the adjoint repre-
sentation of G2.
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4.6.5 Spin(8)

The centralizer of H in F4 is the center of H, which is isomorphic to Z(Spin(8)) ' Z2×Z2.
The restriction of J0 to H is isomorphic to

1⊕2 +V8 +V+
Spin +V−

Spin,

and the restriction of f4 to H is isomorphic to

∧2V8 +V8 +V+
Spin +V−

Spin,

where V8 is the 8-dimensional vector representation of Spin(8), i.e. the composition of
Spin(8) → SO(8) with the standard 8-dimensional representation of SO(8), and V±

Spin are
two 8-dimensional spinor representations.

4.6.6
(
A

[26,114]
1 × A

[26,114]
1 × Sp(2)

)
/µ∆

2

The centralizer of H in F4 is the center of H, which is isomorphic to Z/2Z× Z/2Z.
The restriction of J0 to H is isomorphic to

1+ St⊗ St⊗ 1+ St⊗ 1⊗ V4 + 1⊗ St⊗ V4 + 1⊗ 1⊗ ∧∗V4,

and the restriction of f4 to H is isomorphic to(
Sym2 St⊗ 1+ 1⊗ Sym2 St

)
⊗ 1+ (St⊗ 1+ 1⊗ St)⊗ V4

+St⊗ St⊗ ∧∗V4 + 1⊗ 1⊗ Sym2 V4,

where V4 is the standard representation of Sp(2) and ∧∗V4 is the 5-dimensional irreducible
representation of Sp(2).

4.6.7 A
[73,15]
1 × A

[5,37]
1

The centralizer of H in F4 is trivial.
The restriction of J0 to H is isomorphic to

Sym6 St⊗ Sym2 St + 1⊗ Sym4 St,

and the restriction of f4 to H is isomorphic to(
Sym10 St + Sym2 St

)
⊗ 1+ 1⊗ Sym2 St + Sym6 St⊗ Sym4 St.

4.6.8 A
[5,37]
1 ×

(
A

[33,26,15]
1 × A

[26,114]
1

)
/µ∆

2

The centralizer of H in F4 is the center of H, which is a cyclic group of order 2.
The restriction of J0 to H is isomorphic to

Sym4 St⊗ 1⊗ 1+ Sym2 St⊗
(
St⊗ St + Sym2 St⊗ 1

)
,

and the restriction of f4 to H is isomorphic to

Sym4 St⊗
(
St⊗ St + Sym2 St⊗ 1

)
+ Sym2 St⊗ 1⊗ 1

+1⊗
(
Sym2 St⊗ 1+ 1⊗ Sym2 St + Sym3 St⊗ St

)
.
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4.6.9
(
A

[5,44,15]
1 × A

[26,114]
1 × A

[26,114]
1

)
/µ∆

2

The centralizer of H in F4 is the center of H, which is isomorphic to Z/2Z× Z/2Z.
The restriction of J0 to H is isomorphic to

1+ 1⊗ St⊗ St + Sym3 St⊗ (St⊗ 1+ 1⊗ St) + Sym4 St⊗ 1⊗ 1,

and the restriction of f4 to H is isomorphic to

1⊗
(
Sym2 St⊗ 1+ 1⊗ Sym2 St

)
+ Sym2 St⊗ 1⊗ 1+ Sym3 St⊗ (St⊗ 1+ 1⊗ St)

+Sym4 St⊗ St⊗ St + Sym6 St⊗ 1⊗ 1.

4.6.10
(
A

[9,62,5]
1 × A

[26,114]
1

)
/µ∆

2

The centralizer of H in F4 is the center of H, which is a cyclic group of order 2.
The restriction of J0 to H is isomorphic to

Sym5 St⊗ St +
(
Sym8 St + Sym4 St

)
⊗ 1,

and the restriction of f4 to H is isomorphic to

1⊗ Sym2 St +
(
Sym9 St + Sym3 St

)
⊗ St +

(
Sym10 St + Sym6 St + Sym2 St

)
⊗ 1.

4.6.11
(
A

[5,42,33,22]
1 × A

[33,26,15]
1

)
/µ∆

2

The centralizer of H in F4 is the center of H, which is a cyclic group of order 2.
The restriction of J0 to H is isomorphic to

Sym4 St⊗ 1+
(
Sym3 St + St

)
⊗ St + Sym2 St⊗ Sym2 St,

and the restriction of f4 to H is isomorphic to

St⊗ Sym3 St +
(
Sym4 St + 1

)
⊗ Sym2 St +

(
Sym5 St + Sym3 St

)
⊗ St +

(
Sym2 St

)⊕2 ⊗ 1.

4.6.12
(
A

[42,33,24,1]
1 × A

[42,33,24,1]
1

)
/µ∆

2

The centralizer of H in F4 is the center of H, which is a cyclic group of order 2.
The restriction of J0 to H is isomorphic to

1+ Sym3 St⊗ St + Sym2 St⊗ Sym2 St + St⊗ Sym3 St,

and the restriction of f4 to H is isomorphic to(
Sym4 St + 1

)
⊗ Sym2 St + Sym2 St⊗

(
Sym4 St + 1

)
+ Sym3 St⊗ St + St⊗ Sym3 St.
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4.6.13
∏4

i=1 A
[26,114]
1 /µ∆

2

The centralizer of H in F4 is the center of H, which is isomorphic to Z/2Z×Z/2Z×Z/2Z.
The restriction of J0 to H is isomorphic to

1⊕2 +
∑
Sym

St⊗ St⊗ 1⊗ 1,

where the second term stands for the direct sum of tensor products of standard representa-
tions at every two copies of A[26,114]

1 in H. The restriction of f4 to H is isomorphic to∑
Sym

Sym2 St⊗ 1⊗ 1⊗ 1+
∑
Sym

St⊗ St⊗ 1⊗ 1+ St⊗ St⊗ St⊗ St.

5 Arthur’s conjectures on automorphic representations
In this section, we are going to review the theory of automorphic representations and

Arthur’s conjectures on discrete automorphic representations. For our purposes, it is enough
to restrict to the special case of level 1 algebraic automorphic forms of a reductive group
G over Q admitting a reductive Z-model, as in [CR15; CL19]. We mainly follow these two
references.

5.1 A brief review of automorphic representations
In this subsection we give a quick review on automorphic representations, following [CL19,

§4.3]. Let G be a connected reductive group over Q with a reductive Z-model (G , id), and
AG be the maximal Q-split torus of the center Z(G) of G. Denote by G(A)1 the quotient of
G(A) by the neutral component of AG(R), and consider the adelic quotient

[G] := G(Q)\G(A)1 = G(Q)AG(R)◦\G(A).

We have a left G(Q)-invariant right Haar measure µ on G(A) by [Wei53, §II.9], and the
volume of [G] is finite with respect to this measure. The topological group G(A) acts on the
space L(G) := L2([G]) of square-integrable functions on [G] by right translations. Equipped
with the Petersson inner product defined as

〈f, f ′〉 :=
∫
ff ′dµ,

the space L(G) becomes a unitary representation of G(A). We denote the closure of the sum
of all closed and topologically irreducible subrepresentations of L(G) by Ldisc(G).

Denote by Π(G) the set of equivalence classes of irreducible unitary complex representa-
tions π of G(A) such that π = π∞⊗πf , where π∞ is an irreducible unitary representation of
G(R), and πf is a smooth irreducible representation of G(Af ) satisfying πG (Ẑ)

f 6= 0. We have
the following decomposition:

Ldisc(G)
G (Ẑ) =

⊕
π∈Π(G)

m(π) πG (Ẑ) =
⊕

π∈Π(G)

m(π) π∞ ⊗ π
G (Ẑ)
f , (5.1)
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where the integers m(π) ≥ 0 are finite due to a fundamental result of Harish-Chandra [Cha68,
§I.2, Theorem 1]. We call the integer m(π) the multiplicity of π in Ldisc(G).

Now we give the definition of level one discrete automorphic representations, and refer
to [BJ79, §4] for the general definition of automorphic representations.

Definition 5.1.1. A level one discrete automorphic representation is a representation π of
G(A) in Π(G) such that its multiplicity m(π) in (5.1) is nonzero. We denote the subset of
Π(G) consisting of level one discrete automorphic representations by Πdisc(G).

Notation 5.1.2. Since in this paper we only deal with level one automorphic representations,
so we will always omit “level one” from now on.

Definition 5.1.3. A square-integrable Borel function f : [G] → C is a cusp form if for the
unipotent radical U of each proper parabolic subgroup of G, we have∫

U(Q)\U(A)
f(ug)du = 0

for almost all g ∈ G(A). We denote the subspace of L(G) consisting of the classes of cusp
forms by Lcusp(G). A discrete automorphic representation is cuspidal if it is a subrepre-
sentation of Lcusp(G), and we denote by Πcusp(G) the subset of Π(G) consisting of cuspidal
representations.

Remark 5.1.4. A result of Gelfand, Graev and Piatetski-Shapiro [GGP69] asserts that

Lcusp(G) ⊂ Ldisc(G) and Πcusp(G) ⊂ Πdisc(G).

When G(R) is compact, every automorphic representation of G is discrete by the Peter-Weyl
theorem.

Denote by H(G) =
⊗

pHp(G) the spherical Hecke algebra of the pair
(
G(Af ),G (Ẑ)

)
. For

any representation π = π∞ ⊗ πf ∈ Π(G), the space πG (Ẑ)
f is an irreducible representation of

the spherical Hecke algebra H(G). Since H(G) is commutative [Gro98, Proposition 2.10], the
dimension of πG (Ẑ)

f is 1. Hence the G (Ẑ)-invariant space of the π-isotypic subspace Ldisc(G)π
of Ldisc(G), as a G(R)-representation, is the direct sum of m(π) copies of π∞. This implies
the following result:

Lemma 5.1.5. Let V be an irreducible unitary representation of the Lie group G(R), and
AV (G) the space of G(R)-equivariant linear maps from V to Ldisc(G)

G (Ẑ). Then we have the
following equality:

dimAV (G) =
∑

π∈Π(G), π∞≃V

m(π). (5.2)

Remark 5.1.6. The space AV (G) = HomG(R)(V,Ldisc(G)
G (Ẑ)) can be viewed as the multiplic-

ity space of V in (5.1).

54



5.1.1 Automorphic representations for F4

When the reductive group G has compact real points, due to [Gro99a] we can describe
the multiplicity space AV (G) of V in Ldisc(G)

G (Ẑ) in a more computable manner, which is
explained in [CL19, §4.4.1]. Applying [CL19, Lemma 4.4.2] to F4 and using the fact that
every irreducible representation of F4 is self-dual, we get:

Proposition 5.1.7. Let (ρ, V ) be an irreducible representation of F4 = F4(R). The vector
space AV (F4) is canonically isomorphic to the following space:

MV (F4) :=
{
f : F4(Af )/F4,I(Ẑ) → V

∣∣∣ f(γg) = ρ(γ)f(g) for all γ ∈ F4(Q), g ∈ F4(Af )
}
.

We choose a set of representatives {1, gE} of F4(Q)\F4(Af )/F4,I(Ẑ) corresponding to the
two reductive Z-models (F4,I, id) and (F4,E, ι) of F4 in Proposition 2.3.5. By [CL19, Equation
(4.4.1)] the evaluation map f 7→ (f(1), f(gE)) induces a bijection:

MV (F4) ' V F4,I(Z) ⊕ V F4,E(Z).

Combining the results in this section with Theorem 3.6.1, we have the following compu-
tational result:

Corollary 5.1.8. For any dominant weight λ of F4, we have an explicit formula for
dimAVλ(F4), where Vλ is the irreducible representation of F4 = F4(R) with highest weight
λ. For λ = (λ1, λ2, λ3, λ4) with 2λ1+3λ2+2λ3+λ4 ≤ 13, the dimension dimAVλ(F4) equals
the d(λ) in Table 6.

5.2 Local parametrization of Π(G)

Let G be a connected reductive group over Q with a fixed reductive Z-model (G , id). Let
Ĝ be its complex Langlands dual group, i.e. the root datum of Ĝ is the dual root datum
of G. A representation π ∈ Π(G) can be decomposed as π = π∞ ⊗

(⊗
p πp

)
, where πp is a

spherical irreducible smooth representation of G(Qp) for each p, i.e. πG (Zp)
p 6= 0, and π∞ is

an irreducible unitary representation of the Lie group G(R).
In this subsection, we will recall the parametrizations for spherical irreducible smooth

representations of G(Qp) and for irreducible unitary representations of G(R). Our main
reference is [CL19, §6.2, §6.3].

5.2.1 Satake parameter

For each prime number p, a spherical irreducible smooth representation π of G(Qp) is
determined by the action of the spherical Hecke algebra Hp(G) for the pair (G(Qp),G (Zp))
on the subspace of invariants πG (Zp). Since dim πG (Zp) = 1, the equivalence class of π is
determined uniquely by the ring homomorphism Hp(G) → C given by the Hp(G)-action on
πG (Zp).

By [CL19, Scholium 6.2.2], the Satake isomorphism gives a canonical bijection between
the set of ring homomorphisms Hp(G) → C and the set Ĝ(C)ss of semisimple conjugacy
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classes in Ĝ(C). This induces a bijection π 7→ cp(π) between the set of equivalence classes
of spherical irreducible smooth representations of G(Qp) and the set Ĝ(C)ss. The conjugacy
class cp(π) is called the Satake parameter of πp.

5.2.2 Infinitesimal character

Let g be the Lie algebra of G(C), and ĝ the Lie algebra of Ĝ(C). We fix a Cartan
subalgebra t of g and a Borel subalgebra b ⊂ g containing t, and denote the Weyl group of
g with respect to t by W .

As explained in [CL19, §6.3.4], we can associate a character Z(U(g)) → C to an irre-
ducible unitary representation (π, V ) of G(R), where Z(U(g)) is the center of the universal
enveloping algebra of g. By [CL19, Scholium 6.3.2 and Equation (6.3.1)], the Harish-Chandra
isomorphism induces the following canonical bijections:

HomC-alg(Z(U(g)),C) ' ĝss ' (X∗(t)⊗Z C) /W, (5.3)

where ĝss is the set of semisimple conjugacy classes in ĝ. Hence we associate to (π, V ) a
semisimple conjugacy class c∞(π) ∈ ĝss, called the infinitesimal character of π.

As proved by Harish-Chandra [Kna86, Corollary 10.37], up to isomorphism there are
only a finite number of irreducible unitary representations of G(R) with a given infinitesimal
character. When G(R) is compact, the situation is much simpler due to the following result:

Proposition 5.2.1. [Dix77, §7.4.6] Let G(R) be a compact group, and ρ ∈ X∗(t) ⊗ C the
half-sum of positive roots with respect to (g, b, t). For a dominant weight λ of G(R), the
infinitesimal character of the highest weight representation Vλ of G(R) is λ + ρ, viewed as
an element in ĝss via (5.3). In particular, the infinitesimal character λ + ρ determines Vλ

uniquely.

5.2.3 Langlands parametrization

Now we recall Langlands parametrization of Π(G), following [CL19, §6.4.2].

Definition 5.2.2. Let H be a connected reductive C-group with complex Lie algebra h. We
denote by H(C)ss (resp. hss) the set of H(C)-conjugacy classes of semisimple elements of
H(C) (resp. h). We denote by X(H) the set of families (c∞, c2, c3, c5, . . .), where c∞ ∈ hss
and cp ∈ H(C)ss for all primes p.

By results in §5.2.1 and §5.2.2, we associate to a representation π = π∞ ⊗
(⊗

p πp

)
∈

Π(G) a conjugacy class cp(π) := cp(πp) in Ĝ(C)ss for each p, and a conjugacy class c∞(π) :=

c∞(π∞) in ĝss. Hence we have a canonical map Π(G) → X(Ĝ) defined as

π = π∞ ⊗

(⊗
p

πp

)
7→ c(π) = (c∞(π), c2(π), c3(π), · · · ) ∈ X(Ĝ).

The family of conjugacy classes c(π) determines πf and the infinitesimal character of π∞,
and the map c has finite fibers. When G(R) is compact, the fiber of c is either empty or a
singleton.
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Definition 5.2.3. Let G be a semisimple Q-group admitting a reductive Z-model, and
r : Ĝ → SLn an algebraic representation of its dual group, which induces a map X(Ĝ) →
X(SLn). For any π ∈ Π(G ), we define the following family of conjugacy classes:

ψ(π, r) := r (c(π)) ∈ X(SLn),

and refer to it as the Langlands parameter of the pair (π, r).

5.3 Global parametrization and the Langlands group
For the global parametrization of level one discrete automorphic representations, now

we need to use a conjectural group LZ, the so-called Langlands group of Z, to formulate
the global Arthur-Langlands conjecture. In Arthur’s work [Art89], he uses another group
LQ. However, since we only consider level one discrete automorphic representations in this
paper, it is more convenient to use the group LZ that we are going to recall, following [CR15,
Appendix B; CL19, Preface].

We assume that LZ is a compact Hausdorff topological group equipped with
• A conjugacy class Frobp in LZ, for each prime p,
• A conjugacy class of continuous homomorphisms h : WR → LZ, called the Hodge mor-

phism. Here WR is the Weil group of R, which is a non-split extension of Gal(C/R) =
{1, j} by WC = C×, for the natural action of Gal(C/R) on C×. It is generated by its
open subgroup C× together with an element j, with relations j2 = −1 and jzj−1 = z
for every z ∈ C×.

This group LZ satisfies three axioms that we will introduce one by one.

Axiom 1. (Cebotarev property) The union of conjugacy classes Frobp is dense in LZ.

Remark 5.3.1. In [CR15, Appendix B], the axiom they use is the general Sato-Tate conjecture:
the conjugacy classes Frobp are equidistributed in the compact group LZ equipped with its
Haar measure of mass 1. This is a universal form of the Sato-Tate conjecture for automorphic
representations and it implies the Cebotarev property, but Axiom 1 is enough for us in this
article.

This axiom tells us for two homomorphisms ψ, ψ′ from LZ to some topological group H,
if ψ(Frobp) and ψ′(Frobp) are conjugate in H for each prime p, then ψ and ψ′ are element-
conjugate. An important type of homomorphisms involving LZ is:

Definition 5.3.2. Let G be a reductive Q-group admitting a reductive Z-model. A discrete
global Arthur parameter (of level one) of G is a Ĝ(C)-conjugacy class of continuous group
homomorphisms

ψ : LZ × SL2(C) → Ĝ(C)

such that ψ|SL2(C) is algebraic and the centralizer Cψ of Im(ψ) in Ĝ(C) is finite modulo the
center of Ĝ(C). We call Cψ the (global) component group of ψ, and denote the set of discrete
global Arthur parameters of G by Ψdisc(G).
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Remark 5.3.3. The condition on Cψ in Definition 5.3.2 implies that a discrete global Arthur
parameter for G = GLn is an equivalence class of n-dimensional irreducible representations
of LZ × SL2(C).

In parallel with Langlands parametrization in §5.2.3, we can also associate to any ψ ∈
Ψdisc(G) a collection of conjugacy classes c(ψ) = (c∞(ψ), c2(ψ), c3(ψ), · · · ) ∈ X(Ĝ). For each
prime p, the conjugacy class cp(ψ) is defined by:

cp(ψ) := ψ(Frobp, ep), ep =

(
p−1/2 0
0 p1/2

)
∈ SL2(C).

The infinitesimal character c∞(ψ) of ψ is defined to be the infinitesimal character of the
archimedean Arthur parameter ψ ◦ (h × id) : WR × SL2(C) → Ĝ(C), which is explained in
[CR15, §A.2].

The following axiom connects the collection of conjugacy classes attached to a discrete
automorphic representation and that attached to a discrete global Arthur parameter.
Axiom 2. (Arthur-Langlands conjecture for GLn) For every integer n ≥ 1, there is a unique
bijection

Πdisc(GLn)
∼→ Ψdisc(GLn), π 7→ ψπ

such that c(π) = c(ψπ) for all discrete automorphic representations π of GLn. Moreover, the
discrete global Arthur parameter ψπ is trivial on SL2(C) if and only if we have π ∈ Πcusp(GLn).
Remark 5.3.4. This axiom and the compactness of LZ imply the so-called generalized Ra-
manujan conjecture: for any π ∈ Πcusp(GLn) and any prime p, the eigenvalues of cp(π) all
have absolute value 1.

For general reductive groups, we have the following third axiom:
Axiom 3. Let G be a reductive group admitting a reductive Z-model (G , id), then there exists
a decomposition

Ldisc(G)
G (Ẑ) =

⊥⊕
ψ∈Ψdisc(G)

Aψ(G), (5.4)

stable under the actions of G(R) and H(G), and satisfying the following property: for π ∈
Π(G), if πG (Ẑ) appears in Aψ(G), then we have c(π) = c(ψ).

This axiom tells us for any level one discrete automorphic representation π ∈ Πdisc(G),
there exists a discrete global Arthur parameter ψ of G such that c(ψ) = c(π). In general,
this discrete global Arthur parameter is not unique since two element-conjugate embeddings
into Ĝ(C) may not be conjugate. Conversely, given a discrete global Arthur parameter ψ
of G, there are finitely many (possibly zero) adelic representations π ∈ Π(G) satisfying
c(π) = c(ψ), and we denote the subset of Π(G) consisting of such representations by Πψ(G).

In other words, discrete global Arthur parameters are the objects parametrizing discrete
automorphic representations, but a natural problem that we need to deal with is that which
representations in Πψ(G) for a given ψ appear in the discrete spectrum L(G)disc. We will
see the (conjectural) answer in §5.6.

Another property about LZ that we will use is that it is connected:
Proposition 5.3.5. [CL19, Proposition 9.3.4] Suppose that LZ is a compact topological
group satisfying the axioms above, then it is connected.
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5.3.1 Sato-Tate group

For a discrete global Arthur parameter ψ ∈ Ψdisc(G), we pick a representative LZ ×
SL2(C) → Ĝ(C) and consider its restriction to a maximal compact subgroup:

ψc : LZ × SU(2) → Ĝ(C).

The image of this morphism is contained in some maximal compact subgroup of Ĝ(C). Fix a
maximal connected compact subgroup K of Ĝ(C), and without loss of generality we assume
that ψc is a morphism from LZ × SU(2) → K.

Definition 5.3.6. For any ψ ∈ Ψdisc(G), we define H(ψ) to be the K-conjugacy class of the
image of its associated morphism LZ × SU(2) → K. For any π ∈ Πdisc(G), if there exists a
unique global Arthur parameter ψπ ∈ Ψdisc(G) such that c(π) = c(ψπ), we define H(π) to be
H(ψπ).

Remark 5.3.7. Since maximal connected compact subgroups of SL2(C) are unique up to con-
jugacy, the Ĝ(C)-conjugacy class of the image of LZ×SU(2) → K is well-defined. Combining
with [FHS16, Lemma 2.4], the K-conjugacy class H(ψ) is well-defined.
Remark 5.3.8. The conjugacy class H(ψ), or H(π), of subgroups of K is called the “Sato-
Tate group” in the introduction §1, although it coincides with the usual Sato-Tate group (see
[CR15, Proposition-Definition B.1]) if and only if the restriction of ψ to SL2(C) is trivial.

A cuspidal automorphic representation π of PGLn can be viewed as an element of
Πcusp(GLn) with trivial central character, and the global Arthur parameter ψπ associated
to π via Axiom 2 takes value in SLn(C) = P̂GLn(C). In this case, the global Arthur param-
eter ψπ is trivial on SL2(C), and the conjugacy class H(π) of subgroups of SU(n) coincides
with the usual Sato-Tate group of π.

5.4 Cuspidal representations of GLn

Arthur’s classification of automorphic representations involves self-dual cuspidal repre-
sentations of GLn, n ≥ 1. Moreover, these representations of GLn are trivial on the center
of GLn when they have level one, thus we can replace GLn by PGLn. In this subsection we
will say more about this class of automorphic representations.

Definition 5.4.1. A representation π ∈ Πcusp(PGLn) is self-dual if it is isomorphic to its
dual representation π∨, and we denote the subset of Πcusp(PGLn) consisting of self-dual
representations by Π⊥

cusp(PGLn).

Remark 5.4.2. By the multiplicity one theorem of Jacquet-Shalika, this self-dual condition
is equivalent to that cp(π) = cp(π)

−1 for each prime p and c∞(π) = −c∞(π).
For a representation π ∈ Πcusp(PGLn), its infinitesimal character c∞(π) is a conjugacy

class in sln. Denote by Weights(π) the multiset of eigenvalues of c∞(π).

Definition 5.4.3. A cuspidal automorphic representation π of PGLn is
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• algebraic 9 if Weights(π) ⊂ 1
2
Z and for any w,w′ ∈ Weights(π) we have w − w′ ∈ Z.

• regular if |Weights(π)| = n.
We denote by Π⊥

alg(PGLn) the subset of Π⊥
cusp(PGLn) consisting of algebraic representations,

and by Π⊥
alg,reg(PGLn) the subset consisting of algebraic regular representations.

For an algebraic self-dual cuspidal representation π of PGLn, let k1 ≥ k2 ≥ · · · ≥ kn be
the weights of π (counted with multiplicity). Since π is self-dual, we have ki = −kn+1−i for
i = 1, 2, . . . , n. Following [CR15, §1.5], we call the integers

wi = 2ki, i = 1, 2, . . . , [n/2]

the Hodge weights of π and call the maximal Hodge weight w(π) := w1 the motivic weight
of π.

5.4.1 Arthur’s orthogonal-symplectic alternative

We can divide the set self-dual cuspidal representations of PGLn into two parts, by
Arthur’s symplectic-orthogonal alternative. Our reference is [CL19, §8.3.1].

The classical groups over Z that are Chevalley groups are therefore Sp2g for g ≥ 1,
SOr,r for r ≥ 2, and SOr+1,r for r ≥ 1. For one of these groups G, we denote the standard
representation of Ĝ(C) by St : Ĝ(C) ↪→ SLn(G)(C). For instance, n(Sp2g) = 2g+1, n(SOr,r) =

2r and n(SOr+1,r) = 2r. This map St also induces a natural map from X(Ĝ) to X(SLn(G)).
We have the following theorem by Arthur:
Theorem 5.4.4. [Art13, Theorem 1.4.1] For any n ≥ 1 and a self-dual cuspidal represen-
tation π of PGLn, there exists a classical Chevalley group Gπ, unique up to isomorphism,
with the following properties:

(i) We have n(Gπ) = n.
(ii) There exists a representation π′ ∈ Πdisc(G

π) such that ψ(π′, St) = c(π).
Definition 5.4.5. A representation π ∈ Π⊥

cusp(PGLn) is called orthogonal if Ĝπ(C) '
SOn(C) and symplectic otherwise. We denote the subset of Π⊥

cusp(PGLn) consisting of orthog-
onal representations by Πo

cusp(PGLn), and the subset consisting of symplectic representations
by Πs

cusp(PGLn).
For ∗ = alg or alg, reg, we define Πo

∗(PGLn) = Πo
cusp(PGLn)∩Π⊥

∗ (PGLn) and Πs
∗(PGLn) =

Πs
cusp(PGLn) ∩ Π⊥

∗ (PGLn). We define the subset Π
Sp2n
alg (PGL2n) ⊂ Πs

alg,reg(PGL2n) as:{
π ∈ Πs

alg,reg(PGL2n)
∣∣ Im(ψπ) ' Sp(n)

}
,

and similarly define
ΠSOn

alg (PGLn) =
{
π ∈ Πo

alg,reg(PGLn)
∣∣ Im(ψπ) ' SO(n)

}
.

Example 5.4.6. A representation π ∈ Πcusp(PGL2) is necessarily self-dual and symplectic,
thus Πcusp(PGL2) = Π⊥

cusp(PGL2) = Πs
cusp(PGL2). Moreover, for each positive integer w we

have a bijection between the set of level one normalized Hecke eigenforms of weight w+1 and
the set of π ∈ Π⊥

alg(PGL2) with Hodge weight w. In particular, level one algebraic cuspidal
representations with Hodge weight w exist only when w ≥ 11.

9The term algebraic is in the sense of Borel [Bor79, §18.2].
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5.4.2 Global ε-factor

An important factor related to a cuspidal representation π is its global ε-factor ε(π).
We briefly give its definition as follows: for two level one cuspidal representations π ∈
Πcusp(PGLn) and π′ ∈ Πcusp(PGLn′), Jacquet, Shalika and Piatetski-Shapiro define a factor
ε(π×π′) when studying the meromorphic continuation and functional equation of the Rankin-
Selberg L-function L(s, π × π′) [Cog04, §9].

Definition 5.4.7. The global ε-factor of π ∈ Πcusp(PGLn) is defined as ε(π) := ε(π × 1).

For orthogonal algebraic representations, we have the following result by Arthur:

Theorem 5.4.8. [Art13, Theorem 1.5.3] If π ∈ Πo
alg(PGLn), then ε(π) = 1.

In [CL19, §8.2.21], a method to compute ε(π) for π ∈ Πs
alg(PGLn) is explained. To recall

that method, we review first the archimedean Local Langlands correspondence [Lan73]. We
can associate with each irreducible unitary representation U of GLn(R) a unique (up to
conjugacy) semisimple representation L(U) : WR → GLn(C). By Clozel’s purity lemma
[Clo90, Lemma 4.9], for a representation π ∈ Π⊥

alg(PGLn), the associated representation
L(π∞) is a direct sum of the following types of irreducible representations:

• the trivial representation 1,
• the sign character εC/R = η/|η|,
• and the 2-dimensional induced representation Iw := IndWR

WC

(
z 7→ zw/2z−w/2

)
for some

positive integer w, where z 7→ zw/2z−w/2 stands for the character z 7→ (z/z)w by an
abuse of notation.

There is a unique way to associate a fourth root of unity ε(ρ) with each ρ : WR → GLn(C)
of the above forms such that ε(ρ⊕ ρ′) = ε(ρ)ε(ρ′) and

ε(1) = 1, ε(εC/R) = i, ε(Iw) = iw+1 for any integer w > 0.

There is a connection between this factor ε (L(π∞)) and the global ε-factor of π:

Proposition 5.4.9. [CL19, Proposition 8.2.22] For π ∈ Π⊥
alg(PGLn), we have

ε(π) = ε(L(π∞)).

As a consequence, we can calculate the global ε-factor of π provided we know the repre-
sentation L(π∞) of WR corresponding to π∞. Actually, one has the following result:

Proposition 5.4.10. [CL19, Proposition 8.2.13] Let π ∈ Πs
alg(PGLn) and w1 ≥ w2 ≥ · · · ≥

wn/2 its Hodge weights, then

L(π∞) ' Iw1 ⊕ Iw2 ⊕ · · · ⊕ Iwn/2 .
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5.5 Arthur-Langlands conjecture
Assuming the existence of the Langlands group LZ described in §5.3. Axiom 3 says that

for any reductive group G admitting a reductive Z-model and any discrete automorphic
representation π of G, there exists a discrete global Arthur parameter ψ : LZ × SL2(C) →
Ĝ(C) such that c(π) = c(ψ).
Remark 5.5.1. When the group Ĝ(C) satisfies the “element-conjugacy implies conjugacy”
property as in Proposition 4.1.5, the discrete global Arthur parameter ψ satisfying c(ψ) =

c(π), as a conjugacy class of homomorphisms LZ × SL2(C) → Ĝ(C), is unique.
Let G be semisimple, and fix an irreducible algebraic representation r : Ĝ → SLn,C.

Following [CL19, §6.4.4], we are going to see what the Langlands parameter ψ(π, r) defined
in Definition 5.2.3 looks like for a discrete automorphic representation π of G.

Composing r with a discrete global Arthur parameter ψ : LZ × SL2(C) → Ĝ(C) corre-
sponding to π, we get an n-dimensional representation r ◦ψ of LZ × SL2(C). This represen-
tation can be decomposed as

k⊕
i=1

ri ⊗ Symdi−1 St

for some irreducible representations ri : LZ → SLni and certain integers di ≥ 1, where St
denotes the standard 2-dimensional representation of SL2(C).

By Arthur-Langlands conjecture for general linear groups, i.e. Axiom 2 in §5.3, every
irreducible representation ri : LZ → GLni(C) corresponds to a unique cuspidal representation
πi of PGLni . For v = p or ∞, we have an identity between conjugacy classes:

r(cv(π)) =
k⊕
i

cv(πi)⊗ Symdi−1(ev).

To formulate a global identity, we introduce the following notations:
• Define e ∈ X(SL2) to be (e∞, e2, e3, · · · ) and denote Symd−1(e) ∈ X(SLd) by [d].
• Denote by (c, c′) 7→ c⊕ c′ the map X(SLa)×X(SLb) → X(SLa+b) induced by the direct

sum, and by (c, c′) 7→ c⊗c′ the map X(SLa)×X(SLb) → X(SLab) induced by the tensor
product. We write c⊗ [d] as c[d] for short.

• For π ∈ Πcusp(PGLm), the element c(π) ∈ X(SLm) will simply be denoted by π.
With these notations, we can combine the identities for r(cv(π)) together into one:

ψ(π, r) = r(c(π)) =
k⊕
i=1

πi[di], πi ∈ Πcusp(PGLni).

Now we state Arthur-Langlands conjecture for semisimple groups:

Conjecture 5.5.2. (Arthur-Langlands conjecture) Let G be a semisimple Q-group admitting
a reductive Z-model. For any π ∈ Πdisc(G) and every algebraic representation r : Ĝ→ SLn,C,
there exists a collection of triples (ni, πi, di)i=1,...,k with di, ni ≥ 1 integers satisfying n =∑

i nidi and πi ∈ Πcusp(PGLni) such that

ψ(π, r) = π1[d1]⊕ · · · ⊕ πk[dk].
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This conjecture was proved by Arthur in [Art13] when G is a split classical group and
r is the standard representation of Ĝ. Moreover, the collection of triples (ni, πi, di) in the
conjecture is necessarily unique up to permutation by a result of Jacquet and Shalika [JS81]:

Proposition 5.5.3. [CL19, Proposition 6.4.5] Let k, l ≥ 1 be integers. For 1 ≤ i ≤ k (resp.
1 ≤ j ≤ l), consider integers ni, di ≥ 1 (resp. n′

j, d
′
j ≥ 1) and a representation πi (resp. π′

j)
in Πcusp(PGLni) (resp. Πcusp(PGLn′

j
)). Suppose that we have n :=

∑
i nidi =

∑
j n

′
jd

′
j and

π1[d1]⊕ · · · ⊕ πk[dk] = π′
1[d

′
1]⊕ · · · ⊕ π′

l[d
′
l].

Then k = l and there exists a permutation σ ∈ Sk such that for every 1 ≤ i ≤ k we have
(n′

i, π
′
i, d

′
i) = (nσ(i), πσ(i), dσ(i)).

We call the triple (k, (ni, di)1≤i≤k), up to permutations of the (ni, di), the endoscopic type
of ψ(π, r). The parameter is called stable if k = 1 and endoscopic otherwise. It is called
tempered if di = 1 for all i and non-tempered otherwise.

In Conjecture 5.5.2, cuspidal representations of PGLn, n ≥ 1 are building blocks of Lang-
lands parameters ψ(π, r). Furthermore, the following result shows that under some condi-
tions, for example when G(R) is compact, we only need algebraic cuspidal representations:

Proposition 5.5.4. [CL19, Proposition 8.2.8] Let G be a semisimple Q-group admitting a
reductive Z-model, π ∈ Πdisc(G) and r : Ĝ→ SLn,C an n-dimensional algebraic representation
of Ĝ. Suppose that

(i) c∞(π) ∈ ĝss is the infinitesimal character of a finite-dimensional irreducible complex
representation of GC,

(ii) and ψ(π, r) = ⊕k
i=1πi[di] with πi ∈ Πcusp(PGLni), i = 1, . . . , k.

Then πi is algebraic for i = 1, . . . , k. Moreover, the class of w(πi) + di − 1 in Z/2Z depends
only on r and not on the integer i or even on π.

5.6 Arthur’s multiplicity formula
Arthur gives a conjectural formula for the multiplicity of an adelic representation π ∈

Π(G) in the discrete spectrum Ldisc(G). In this section, we will state this for a simply-
connected anisotropic Q-group G admitting a reductive Z-model, following [Art89, §8].

For a representation π ∈ Π(G), there are finitely many discrete global Arthur parameters
ψ of G such that c(π) = c(ψ). According to [Art89], the multiplicity m(π) of π in Ldisc(G)
should be the sum of mψ over the set of all such ψ, where mψ is some integer that we are
going to introduce. We note that these ψ all belong to the following subset of Ψdisc(G):

Definition 5.6.1. We define ΨAJ(G) to be the subset of Ψdisc(G) consisting of ψ ∈ Ψdisc(G)
satisfying that c∞(ψ) is the infinitesimal character of a finite dimensional irreducible repre-
sentation of GC.

Remark 5.6.2. The subscript AJ stands for Adams-Johnson. This means the archimedean
Arthur parameter WR × SL2(C) → Ĝ(C) for ψ ∈ Ψdisc(G) is an Adams-Johnson parameter
in the sense of [CL19, §8.4.14] if and only if ψ ∈ ΨAJ(G). The condition that c∞(ψ) is
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the infinitesimal character of a finite-dimensional irreducible representation is the condition
(AJ1) in [CL19, §8.4.14], and the second condition (AJ2) for Adams-Johnson parameters is
automatically satisfied in our case by [Taï17, §4.2.2; NP21, Proposition 6].

Now we let ψ ∈ ΨAJ(G). In Definition 5.3.2, the global component group Cψ of ψ is
defined to be the centralizer of Im(ψ) in Ĝ(C). When G is semisimple, this group is finite
since the center of Ĝ is finite. Moreover, as explained in [CL19, §8.4.14], Cψ is an elementary
finite abelian 2-group, i.e. a product of finitely many copies of Z/2Z. For any ψ ∈ ΨAJ(G),
Arthur’s formula for mψ involves two quadratic characters of Cψ.

5.6.1 The character ρ∨ψ
The first character of Cψ is defined as follows.
By Proposition 5.2.1, the conjugacy class c∞(ψ) for ψ ∈ ΨAJ(G) is regular, viewed as

a cocharacter of a maximal torus T̂ of Ĝ chosen as in [CL19, §8.4.14]. Hence there is a
unique Borel subgroup B̂ ⊃ T̂ of Ĝ with respect to whom the infinitesimal character c∞(ψ)

is strictly dominant. Let ρ∨ψ be the half-sum of positive roots with respect to (Ĝ, B̂, T̂ ). Since
G is simply-connected, ρ∨ψ ∈ 1

2
X∗(T̂ ) is a character of T̂ . Its restriction to the component

group Cψ is the first character we need, and we denote ρ∨|Cψ by ρ∨ψ for short.

5.6.2 Arthur’s character εψ
A discrete global Arthur parameter ψ ∈ ΨAJ(G) induces a morphism

Cψ × LZ × SL2(C) → Ĝ(C).

Restricting the adjoint representation ĝ of Ĝ(C) along this morphism, it can be decomposed
into a direct sum

ĝ|Cψ×LZ×SL2(C) =
l⊕

i=1

χi ⊗ πi[di], (5.5)

where χi is a quadratic character of Cψ, and πi is an ni-dimensional irreducible representation
of Lψ which is identified as an element in Π⊥

cusp(PGLni). Moreover, since ψ belongs to ΨAJ(G),
according to Proposition 5.5.4 these cuspidal representations πi are algebraic.

Definition 5.6.3. [Art89, Equation 8.4] Let ψ ∈ ΨAJ(G), and I be the subset of {1, . . . , l}
consisting of i satisfying that in (5.5) the cuspidal representation πi is self-dual and ε(πi) =
−1. Arthur’s character εψ : Cψ → µ2 is defined by

εψ(s) :=
∏
i∈I

χi(s), for every s ∈ Cψ.

The following result shows that it is sufficient to calculate the global epsilon factors ε(πi)
for i in a subset of {1, . . . , l}:
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Proposition 5.6.4. Let ψ ∈ ΨAJ(G). For any s ∈ Cψ, let Is be the subset of {1, . . . , l}
consisting of i satisfying that in (5.5) the representation πi is self-dual, di is even, and
χi(s) = −1. Then we have:

εψ(s) =
∏
i∈Is

ε(πi).

Proof. When di is odd, the di-dimensional irreducible representation of SL2(C) is orthogonal.
Since the adjoint representation is an orthogonal representation, the self-dual representation
πi of LZ must be also orthogonal, which implies ε(πi) = 1 by Theorem 5.4.8. Hence the
subset I in Definition 5.6.3 is a subset of {i | di is even}, and for any s ∈ Cψ we have

εψ(s) =
∏

2|di, πi=π∨
i , ε(πi)=−1

χi(s) =
∏

2|di, πi=π∨
i , χi(s)=−1

ε(πi) =
∏
i∈Is

ε(πi).

5.6.3 The multiplicity formula

With two characters ρ∨ψ and εψ in hand, we can state Arthur’s following conjecture:

Conjecture 5.6.5. (Arthur’s multiplicity formula) Let G be a simply-connected anisotropic
Q-group with a reductive Z-model, and π a level one adelic representation in Π(G). We have
the following formula for the multiplicity m(π) of π in the discrete spectrum Ldisc(G):

m(π) =
∑

ψ∈Ψdisc(G), c(ψ)=c(π)

mψ, where mψ =

{
1, if ρ∨ψ = εψ,
0, otherwise. (5.6)

6 Classification of global Arthur parameters for F4

In this section, we are going to apply Arthur’s conjectures recalled in §5.5 and §5.6 to
the simply-connected anisotropic Q-group F4 defined in Definition 2.1.6. The dual group F̂4

is isomorphic to the extension F4,C of F4 to C. In other words, the complex Lie group F̂4(C)
is isomorphic to the complexification F4,C of the real compact Lie group F4.

6.1 Arthur parameters of F4

The real points F4 = F4(R) is compact, so an adelic representation π ∈ Π(F4) is deter-
mined uniquely by c(π). On the other hand, by Proposition 4.1.5 and Axiom 1, a discrete
global Arthur parameter ψ of F4 is also determined uniquely by c(ψ) ∈ X(F̂4). Moreover,
we have the following criterion, which is a direct corollary of Proposition 4.2.1:

Proposition 6.1.1. Let ψ1 and ψ2 be two discrete global Arthur parameters of F4, and
r0 : F̂4 → SL26,C the 26-dimensional irreducible representation of F4(C). Then ψ1 = ψ2 if
and only if r0(c(ψ1)) = r0(c(ψ2)).
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By this result, we will identify a discrete global Arthur parameter ψ ∈ Ψdisc(F4) with the
corresponding family of conjugacy classes r0(c(ψ)) ∈ X(SL26).

For a level one discrete automorphic representation π ∈ Πdisc(F4), the discrete global
Arthur parameter ψ ∈ ΨAJ(F4) such that c(ψ) = c(π) predicted by Axiom 1 is unique. We
denote this parameter by ψπ, which is identified with ψ(π, r0) ∈ X(SL26). Conversely, for
ψ ∈ ΨAJ(F4), we denote the unique representation π ∈ Π(π) such that c(π) = c(ψ) by πψ.

The following lemma gives us some constraint on the infinitesimal character c∞(ψ) of
ψ ∈ ΨAJ(F4):

Lemma 6.1.2. Let c∞ ∈ (f4)ss be the infinitesimal character of an irreducible representation
of the compact group F4, then there exists four non-negative integers a, b, c, d such that the
eigenvalues (counted with multiplicity) of r0(c∞) ∈ (sl26)ss are:

0, 0,±(a+ 1),±(b+ 1),±(a+ b+ 2),±(b+ c+ 2),±(a+ b+ c+ 3),±(b+ c+ d+ 3),

±(a+ b+ c+ d+ 4),±(a+ 2b+ c+ 4),±(a+ 2b+ c+ d+ 5),±(a+ 2b+ 2c+ d+ 6),

±(a+ 3b+ 2c+ d+ 7),±(2a+ 3b+ 2c+ d+ 8).

Proof. If we write the highest weight λ of this irreducible representation of F4 as a$1+b$2+
c$3 + d$4, then by Proposition 5.2.1 the infinitesimal character c∞ is λ+ ρ = (a+ 1)$1 +
(b + 1)$2 + (c + 1)$3 + (d + 1)$4. The eigenvalues of r0(c∞) are of the form 〈λ + ρ, α∨〉,
where α∨ runs over the 26 weights of F̂4(C) appearing in the representation r0. By an easy
calculation, we get the eigenvalues in the lemma.

As recalled in §5.3.1, we associate to ψ ∈ ΨAJ(F4) a morphism ψc : LZ × SU(2) → F4

between compact Lie groups. This homomorphism inherits the following properties from ψ:
• the image Im(ψc) is connected due to Proposition 5.3.5,
• the centralizer of Im(ψc) in F4 coincides with the global component group Cψ of ψ,

which is an elementary finite abelian 2-group by [CL19, §8.4.14],
• and the zero weight appears exactly twice in the restriction of the 26-dimensional

irreducible representation J0 of F4 along ψc by Lemma 6.1.2.
Hence Im(ψc) is a subgroup of F4 satisfying the three conditions in the beginning of §4, thus
the class H(ψ) defined in Definition 5.3.6 is the conjugacy class of one of the subgroups of
F4 listed in Theorem 4.6.7.

According to Conjecture 5.5.2, the discrete global Arthur parameter ψπ = ψ(π, r0) cor-
responding to a discrete automorphic representation π ∈ Πdisc(F4) should be of the form:

π1[d1]⊕ · · · ⊕ πk[dk],

where πi ∈ Πcusp(PGLni) and
∑k

i=1 nidi = 26. By Proposition 5.5.4, every πi is algebraic,
and it is also self-dual by the following lemma:

Lemma∗ 6.1.3. Let π ∈ Πdisc(F4) and ψπ = π1[d1]⊕· · ·⊕πk[dk] be its corresponding discrete
global Arthur parameter, then for each i = 1, . . . , k, the representation πi ∈ Πcusp(PGLni) is
self-dual.
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Proof. By our classification result in §4.6, identifying πi ∈ Πcusp(PGLni) as an irreducible
representation of LZ, it must be of the form LZ ↠ H

r→ SLni(C), where H is a connected
compact subgroup of F4 and r is a self-dual irreducible representation of H, thus πi itself is
self-dual.

So a discrete global Arthur parameter ψ ∈ ΨAJ(F4) corresponding to some π ∈ Πdisc(F4)
must be of the form

ψ = π1[d1]⊕ · · · ⊕ πk[dk], where πi ∈ Π⊥
alg(PGLni),

k∑
i=1

nidi = 26. (6.1)

The endoscopic types (k, (ni, di)1≤i≤k) can be classified by our results in §4.6.
Example 6.1.4. If the class H(ψ) associated to ψ ∈ ΨAJ(F4) is the conjugacy class of

H =
(
A

[9,62,5]
1 × A

[26,114]
1

)
/µ∆

2 ,

by §4.6.10 the restriction of the 26-dimensional irreducible representation (r0, J0) along ψ is
isomorphic to

Sym5 St⊗ St + Sym8 St⊗ 1+ Sym4 St⊗ 1.

Depending on how LZ and SU(2) are mapped to this subgroup H ⊂ F4, we have the following
three possible endoscopic types for ψ:

• (3, (2, 6), (1, 5), (1, 9)), ψ = π[6]⊕ [5]⊕ [9], π ∈ Π⊥
alg(PGL2);

• (3, (9, 1), (5, 1), (6, 2)), ψ = Sym8 π ⊕ Sym4 π ⊕ Sym5 π[2], π ∈ Π⊥
alg(PGL2);

• (3, (9, 1), (5, 1), (12, 1)), ψ = Sym8 π1 ⊕ Sym4 π2 ⊕ (Sym5 π1 ⊗ π2), π1, π2 ∈ Π⊥
alg(PGL2).

6.2 The multiplicity formula for F4

For a discrete global Arthur parameter ψ ∈ ΨAJ(F4), Arthur’s multiplicity formula Con-
jecture 5.6.5 predicts that the multiplicity m(πψ) of πψ in Ldisc(F4) equals to mψ, the formula
for which is given in (5.6). To calculate mψ, it suffices to know two characters of Cψ: Arthur’s
character εψ, and ρ∨ψ. We have given the formula of εψ in Proposition 5.6.4, and in this sub-
section we will give a recipe for the character ρ∨ψ for our Q-group F4.

We fix a maximal ideal T̂ of F̂4 and a Borel subgroup B̂ ⊃ T̂ as in §5.6.1 such that
the infinitesimal character c∞(ψ), as a cocharacter of T̂ is strictly dominant with respect to
(F̂4, B̂, T̂ ). We denote the four simple roots of the root system with respect to (F̂4, B̂, T̂ ) by
α∨
i , i = 1, 2, 3, 4 10.

By Lemma 6.1.2, we can order the eigenvalues (counted with multiplicity) of c∞(ψ) as
µ1 > µ2 > µ3 > µ4 > µ5 ≥ · · · > µ26. The partial order relation of the positive weights of r0
in Table 1 implies that

µ1 = 〈c∞(ψ), 2α∨
1 + 3α∨

2 + 2α∨
3 + α∨

4 〉, µ4 = 〈c∞(ψ), α∨
1 + 2α∨

2 + α∨
3 + α∨

4 〉.
10Here we still follow Bourbaki’s notation, but since we are considering the root system of the dual group

Ĝ, the simple root α∨
i , 1 ≤ i ≤ 4 corresponds to α5−i in Bourbaki.
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Notice that

(2α∨
1 + 3α∨

2 + 2α∨
3 + α∨

4 ) + (α∨
1 + 2α∨

2 + α∨
3 + α∨

4 ) ≡ α∨
1 + α∨

2 + α∨
3 ≡ ρ∨ψmod 2X∗(T̂ ),

thus the character ρ∨ψ of Cψ ⊂ T̂ [2] is the product of (2α∨
1 + 3α∨

2 + 2α∨
3 + α∨

4 )|Cψ and
(α∨

1 + 2α∨
2 + α∨

3 + α∨
4 )|Cψ . Hence it suffices to determine these two characters.

If ψ = π1[d1] ⊕ · · · ⊕ πk[dk] as in (6.1), the eigenvalues of r0(c∞(ψ)) ∈ (sl26)ss are of the
form w+ j

2
, where w is a weight of πi and j ∈ {di− 1, di− 3, . . . ,−di+3,−di+1}. For each

i = 1, . . . , k, we define a multiset

Wi :=

{
w +

j

2

∣∣∣∣w ∈ Weights(πi) and j = di − 1, di − 3, . . . ,−(di − 3),−(di − 1)

}
.

Proposition 6.2.1. There exists a unique index i (resp. j) in {1, . . . , k} such that µ1 ∈ Wi

(resp. µ4 ∈ Wj). If we denote respectively by εi and εj the characters of Cψ induced by the
Cψ-actions on πi[di] and πj[dj], then ρ∨ψ = εi · εj.

Proof. The uniqueness of i and j follows from the fact that µ1 and µ4 are different from
other eigenvalues of r0(c∞(ψ)).

For any s ∈ Cψ, we have

ρ∨ψ(s) = (2α∨
1 + 3α∨

2 + 2α∨
3 + α∨

4 )(s) · (α∨
1 + 2α∨

2 + α∨
3 + α∨

4 )(s).

Since µ1 ∈ Wi, the value (2α∨
1 + 3α∨

2 + 2α∨
3 + α∨

4 )(s) is the scalar given by the action of
s on the irreducible summand πi[di], which equals εi(s) by definition. Similarly, we have
(α∨

1 + 2α∨
2 + α∨

3 + α∨
4 )(s) = εj(s) and the identity ρ∨ψ = εi · εj.

6.3 Classification of Arthur parameters
Now we can do (conjectural) classification of global Arthur parameters for F4:

Theorem∗ 6.3.1. Admitting the existence of the Langlands group LZ defined in §5.3 and
Arthur’s multiplicity formula Conjecture 5.6.5, a (level one) discrete global Arthur parameter
ψ ∈ ΨAJ(F4) satisfies m(πψ) = 1 if and only if it belongs to the parameters described in the
following propositions (from Proposition 6.3.4 to Proposition 6.3.18).

In this subsection, we will prove Theorem 6.3.1 case by case, depending on the conjugacy
class H(ψ) associated to the discrete global Arthur parameter ψ. For each subgroup H of
F4 = F4(R) listed in §4.6, we classify all the endoscopic types of ψ ∈ ΨAJ(F4) such that H(ψ)
is the conjugacy class of H like what we have done in Example 6.1.4, then apply Arthur’s
multiplicity formula Conjecture 5.6.5, Proposition 5.6.4 and Proposition 6.2.1 to ψ and get
those with m(πψ) = 1.

Notation 6.3.2. From now on, when H(ψ) is the F4-conjugacy class of H, we say H(ψ) = H
by an abuse of notation.

Remark 6.3.3. Since the proof of Theorem 6.3.1 is long, readers can read first the proof of
Proposition 6.4.3 in §6.4 to see how Arthur’s conjectures are used.
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6.3.1 H = A
[17,9]
1

The restriction of the 26-dimensional irreducible representation J0 to H is isomorphic to

Sym16 St + Sym8 St.

For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are two possible endoscopic
types:

(i) (2, (1, 17), (1, 9)), which corresponds to the parameter [17]⊕ [9] of the trivial represen-
tation of F4(A).

(ii) (2, (17, 1), (9, 1)). The discrete global Arthur parameters ψ with this type are con-
structed as follows: for a representation π ∈ Π⊥

alg(PGL2) and a positive integer k,
we denote by Symk π the representation in Π⊥

alg,reg(PGLk+1) corresponding to the irre-
ducible representation given by

LZ
ψπ→ SL2(C) → SL(Symk St) ' SLk+1(C).

A global Arthur parameter of this type is of the form:

Sym16 π ⊕ Sym8 π, π ∈ Π⊥
alg(PGL2).

Proposition∗ 6.3.4. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:

• [17]⊕ [9], which corresponds to the trivial representation of F4(A).
• Sym16 π ⊕ Sym8 π, π ∈ Π⊥

alg(PGL2).

Proof. This is because Cψ is trivial.

6.3.2 H =
(
A

[9,62,5]
1 × A

[26,114]
1

)
/µ∆

2

By §4.6.10 the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

Sym5 St⊗ St + (Sym8 St + Sym4 St)⊗ 1,

and the centralizer of H in F4 is Z(H) ' Z/2Z.
For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are three possible endoscopic

types:
(i) (3, (2, 6), (1, 5), (1, 9)). A global Arthur parameter of this type is of the form:

π[6]⊕ [5]⊕ [9], π ∈ Π⊥
alg(PGL2).

(ii) (3, (9, 1), (5, 1), (6, 2)). A global Arthur parameter of this type is of the form:

Sym8 π ⊕ Sym4 π ⊕ Sym5 π[2], π ∈ Π⊥
alg(PGL2).
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(iii) (3, (12, 1), (9, 1), (5, 1)). For two representations π1, π2 ∈ Π⊥
alg(PGL2), we can construct

the following 12-dimensional irreducible representation of LZ:

LZ
(ψπ1 ,ψπ2 )−→ SL2(C)× SL2(C)

Sym5 ⊗id−→ SL12(C),

which induces a cuspidal representation of PGL12, denoted by Sym5 π1 ⊗ π2. A global
Arthur parameter of this type is of the form:

Sym8 π1 ⊕ Sym4 π1 ⊕
(
Sym5 π1 ⊗ π2

)
, π1, π2 ∈ Π⊥

alg(PGL2).

Remark 6.3.5. In fact, for a (3, (12, 1), (9, 1), (5, 1))-type parameter

ψ = Sym8 π1 ⊕ Sym4 π1 ⊕
(
Sym5 π1 ⊗ π2

)
, π1, π2 ∈ Π⊥

alg(PGL2),

there are some conditions on the motivic weights w(π1),w(π2) to make ψ a parameter in
ΨAJ(F4). We will add these conditions for global Arthur parameters ψ with mψ = 1 when
necessary. For example, when w(π2) > 9w(π1) the condition for ψ ∈ Ψ(F4) is that w(π2) ≥
9w(π1) + 2, which is satisfied automatically since w(π2) and 9w(π1) are two distinct odd
numbers.

For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to

1⊗ Sym2 St +
(
Sym9 St + Sym3 St

)
⊗ St +

(
Sym10 St + Sym6 St + Sym2 St

)
⊗ 1.

Proposition∗ 6.3.6. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:

• π[6]⊕ [5]⊕ [9], where π ∈ Π⊥
alg(PGL2).

• Sym8 π ⊕ Sym4 π ⊕ Sym5 π[2], where π ∈ Π⊥
alg(PGL2) satisfies w(π) ≡ 3mod 4.

• Sym8 π1 ⊕ Sym4 π1 ⊕
(
Sym5 π1 ⊗ π2

)
, where π1, π2 ∈ Π⊥

alg(PGL2) have motivic weights
w1, w2 respectively such that w2 > 9w1 or 5w1 < w2 < 7w1.

Proof. We denote the generator of Cψ = Z(H) by γ.
Case (i): ψ = π[6]⊕ [5]⊕ [9], where π ∈ Π⊥

alg(PGL2) has motivic weight w. In this case
the restriction of f4 along ψ is isomorphic to

Sym2 π ⊕ π[10]⊕ π[4]⊕ [11]⊕ [7]⊕ [3].

By Proposition 5.6.4, we have:

εψ(γ) = ε(π) · ε(π) = ε(Iw)
2 = 1.

On the other side, since w ≥ 11 we have µ1 =
w+5
2

and µ4 =
w−1
2

. Both of them come from
the irreducible summand π[6] in ψ, so ρ∨ψ must be the trivial character by Proposition 6.2.1.
By Arthur’s multiplicity formula, m(πψ) = 1 for any π ∈ Π⊥

alg(PGL2).
Case (ii): ψ = Sym8 π⊕ Sym4 π⊕ Sym5 π[2], where π ∈ Π⊥

alg(PGL2) has motivic weight
w. In this case the restriction of f4 along ψ is isomorphic to

Sym10 π ⊕ Sym9 π[2]⊕ Sym6 π ⊕ Sym3 π[2]⊕ Sym2 π ⊕ [3].
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By Proposition 5.6.4, we have:

εψ(γ) = ε(Sym3 π) · ε(Sym9 π)

= ε(I3w + Iw) · ε(I9w + I7w + I5w + I3w + Iw)

= (−1)(w+1)/2+(3w+1)/2 · (−1)(w+1)/2+(3w+1)/2+(5w+1)/2+(7w+1)/2+(9w+1)/2

= (−1)(w+3)/2.

On the other side, µ1 = 4w comes from Sym8 π and µ4 = 5w−1
2

comes from Sym5 π[2]. So
ρ∨ψ(γ) = −1 by Proposition 6.2.1. By Arthur’s multiplicity formula, m(πψ) = 1 if and only
if w ≡ 3mod 4.

Case (iii): ψ = Sym8 π1 ⊕ Sym4 π1 ⊕
(
Sym5 π1 ⊗ π2

)
, where π1, π2 ∈ Π⊥

alg(PGL2) have
motivic weight w1, w2 respectively. Since this parameter is tempered, the character εψ is
always trivial. We only need to find what condition w1, w2 should satisfy to make ρ∨ψ(γ) = 1.
In this case, γ acts on Sym8 π1 and Sym4 π1 by 1 and on Sym5 π1 ⊗ π2 by −1. We can see
that µ1 = 4w1 or 5w1+w2

2
, depending on the values of w1, w2.

(1) If µ1 = 4w1, which is equivalent to w2 < 3w1. Now ρ∨ψ(γ) = 1 if and only if µ4 = 3w1

since the other positive weights w1, 2w1 in Sym4 π1⊕Sym8 π1 both have multiplicity 2.
However, 3w1 is larger than all the Hodge weights of ψ except 4w1 and 5w1+w2

2
, which

shows that it can only be µ2 or µ3. So in this case ρ∨ψ(γ) = −1.
(2) If µ1 = 5w1+w2

2
, which is equivalent to w2 > 3w1. Now ρ∨ψ(γ) = 1 if and only if

µ4 =
w1+w2

2
or −w1+w2

2
.

(a) µ4 =
w1+w2

2
is equivalent to 4w1 >

w1+w2

2
> 3w1, thus 5w1 < w2 < 7w1.

(b) µ4 =
−w1+w2

2
is equivalent to −w1+w2

2
> 4w1, thus w2 > 9w1.

By Arthur’s multiplicity formula m(πψ) = 1 if and only if w2 > 9w1 or 5w1 < w2 < 7w1.

6.3.3 H =
(
A

[5,42,33,22]
1 × A

[33,26,15]
1

)
/µ∆

2

By §4.6.11 the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

Sym4 St⊗ 1+
(
Sym3 St + St

)
⊗ St + Sym2 St⊗ Sym2 St,

and the centralizer of H in F4 is Z(H) ' Z/2Z.
For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are three possible endoscopic

types:
(i) (4, (3, 3), (2, 4), (2, 2), (1, 5)). A global Arthur parameter of this type is of the form:

Sym2 π[3]⊕ π[4]⊕ π[2]⊕ [5], π ∈ Π⊥
alg(PGL2).

(ii) (4, (5, 1), (4, 2), (3, 3), (2, 2)). A global Arthur parameter of this type is of the form:

Sym4 π ⊕ Sym3 π[2]⊕ Sym2 π[3]⊕ π[2], π ∈ Π⊥
alg(PGL2).
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(iii) (4, (9, 1), (8, 1), (5, 1), (4, 1)). A global Arthur parameter of this type is of the form:

Sym4 π1 ⊕ (Sym3 π1 ⊗ π2)⊕ (Sym2 π1 ⊗ Sym2 π2)⊕ (π1 ⊗ π2), π1, π2 ∈ Π⊥
alg(PGL2),

where the representations Symk π1⊗Syml π2 are defined similarly as the representation
Sym5 π1 ⊗ π2 appearing in [(12, 1), (9, 1), (5, 1)]-type parameters introduced in §6.3.2.

For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to

St⊗ Sym3 St +
(
Sym4 St + 1

)
⊗ Sym2 St +

(
Sym5 St + Sym3 St

)
⊗ St +

(
Sym2 St

)⊕2 ⊗ 1.

Proposition∗ 6.3.7. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:

• Sym2 π[3]⊕ π[4]⊕ π[2]⊕ [5], where π ∈ Π⊥
alg(PGL2).

• Sym4 π ⊕ Sym3 π[2]⊕ Sym2 π[3]⊕ π[2], where π ∈ Π⊥
alg(PGL2).

• Sym4 π1⊕ (Sym3 π1⊗π2)⊕ (Sym2 π1⊗Sym2 π2)⊕ (π1⊗π2), where π1, π2 ∈ Π⊥
alg(PGL2)

have motivic weights w1, w2 respectively such that

w1 > 3w2 or w1 < w2 < 3w1 or 3w1 < w2 < 5w1.

Proof. We denote the generator of Cψ = Z(H) by γ.
Case (i): ψ = Sym2 π[3] ⊕ π[4] ⊕ π[2] ⊕ [5], where π ∈ Π⊥

alg(PGL2) has motivic weight
w. In this case the restriction of f4 along ψ is isomorphic to

Sym3 π[2]⊕ Sym2 π[5]⊕ Sym2 π ⊕ π[6]⊕ π[4]⊕ [3]⊕ [3].

By Proposition 5.6.4, we have:

εψ(γ) = ε(Sym3 π) · ε(π) · ε(π) = ε(I3w + Iw) · ε(Iw)2 = (−1)2w+1 = −1.

On the other side, µ1 = w + 1 comes from Sym2 π[3] and µ4 =
w+3
2

comes from π[4]. Since
γ acts on Sym2 π[3] by 1 and on π[4] by −1, we have ρ∨ψ(γ) = 1 by Proposition 6.2.1. By
Arthur’s multiplicity formula, m(πψ) = 1 for any π ∈ Π⊥

alg(PGL2).
Case (ii): ψ = Sym4 π⊕Sym3 π[2]⊕Sym2 π[3]⊕π[2], where π ∈ Π⊥

alg(PGL2) has motivic
weight w. In this case the restriction of f4 along ψ is isomorphic to

Sym5 π[2]⊕ Sym4 π[3]⊕ Sym3 π[2]⊕ (Sym2 π)⊕2 ⊕ π[4]⊕ [3].

By Proposition 5.6.4, we have:

εψ(γ) = ε(π) · ε(Sym3 π) · ε(Sym5 π) = ε(Iw)ε(I3w + Iw)ε(I5w + I3w + Iw) = (−1)3w+1 = 1.

On the other side, µ1 = 2w comes from Sym4 π and µ4 = w+1 comes from Sym2 π[3]. Since
γ acts on Sym4 π and Sym2 π[3] both by 1, we have ρ∨ψ(γ) = 1 by Proposition 6.2.1. Arthur’s
multiplicity formula shows that m(πψ) = 1 for any π ∈ Π⊥

alg(PGL2).
Case (iii): ψ = Sym4 π1 ⊕ (Sym3 π1 ⊗ π2) ⊕ (Sym2 π1 ⊗ Sym2 π2) ⊕ (π1 ⊗ π2), where

π1, π2 ∈ Π⊥
alg(PGL2) have motivic weights w1, w2 respectively. The motivic weights satisfy

w2 6= w1, w2 6= 3w1, otherwise the zero weight appears more than twice and ψ fails to be in
ΨAJ(F4). In this case εψ is trivial. The element γ acts on Sym4 π1 and Sym2 π1 ⊗ Sym2 π2
by 1, and on Sym3 π1 ⊗ π2, π1 ⊗ π2 by −1. The largest weight µ1 is 2w1 or w1 + w2.
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(1) If w1 > w2, then µ1 = 2w1. Now µ4 equals to 3w1−w2

2
or w1 + w2. The character ρ∨ψ is

trivial if and only if µ4 = w1 + w2, which is equivalent to w1 > 3w2.
(2) If w1 < w2, then µ1 = w1 + w2.

(a) If w2 > 3w1, then

w1 + w2 > w2 > max(−w1 + w2,
3w1 + w2

2
) > min(−w1 + w2,

3w1 + w2

2
)

and they are larger than other weights, thus µ4 = −w1 + w2 or 3w1+w2

2
. So

ρ∨ψ(γ) = 1 if and only if µ4 = −w1 + w2, thus if and only if 3w1+w2

2
> w2 − w1,

which is equivalent to that 3w1 < w2 < 5w1.
(b) If w2 < 3w1, then

w1 + w2 >
3w1 + w2

2
> max(2w1, w2) > min(2w1, w2)

and they are larger than other weights. So we always have ρ∨ψ(γ) = 1.
By Arthur’s multiplicity formula, m(πψ) = 1 if and only if w1 > 3w2 or w1 < w2 < 5w1 and
w2 6= 3w1.

6.3.4 H =
(
A

[42,33,24,1]
1 × A

[42,33,24,1]
1

)
/µ∆

2

By §4.6.12, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

1+ Sym3 St⊗ St + Sym2 St⊗ Sym2 St + St⊗ Sym3 St,

and the centralizer of H in F4 is Z(H) ' Z/2Z.
For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are two possible endoscopic

types:
(i) (4, (4, 2), (3, 3), (2, 4), (1, 1)). A global Arthur parameter of this type is of the form:

Sym3 π[2]⊕ Sym2 π[3]⊕ π[4]⊕ [1], π ∈ Π⊥
alg(PGL2).

(ii) (4, (9, 1), (8, 1), (8, 1), (1, 1)). A global Arthur parameter of this type is of the form:

(Sym3 π1 ⊗ π2)⊕ (Sym2 π1 ⊗ Sym2 π2)⊕ (π1 ⊗ Sym3 π2)⊕ [1], π1, π2 ∈ Π⊥
alg(PGL2).

For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to(

Sym4 St + 1
)
⊗ Sym2 St + Sym2 St⊗

(
Sym4 St + 1

)
+ Sym3 St⊗ St + St⊗ Sym3 St.

Proposition∗ 6.3.8. A discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) = H
and m(πψ) = 1 must be of one of the following parameters:

• Sym3 π[2]⊕ Sym2 π[3]⊕ π[4]⊕ [1], where π ∈ Π⊥
alg(PGL2) satisfies w(π) ≡ 3mod 4.
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• (Sym3 π1⊗π2)⊕ (Sym2 π1⊗Sym2 π2)⊕ (π1⊗Sym3 π2)⊕ [1], where π1, π2 have motivic
weights w1, w2 respectively such that w2 < w1 < 3w2.

Proof. We denote the generator of Cψ = Z(H) by σ.
Case (i): ψ = Sym3 π[2] ⊕ Sym2 π[3] ⊕ π[4] ⊕ [1], where π ∈ Π⊥

alg(PGL2) has motivic
weight w. In this case the restriction of f4 along ψ is isomorphic to

Sym4 π[3]⊕ Sym3 π[2]⊕ Sym2 π[5]⊕ Sym2 π ⊕ π[4]⊕ [3].

By Proposition 5.6.4, we have:

εψ(σ) = ε(Sym3 π) · ε(π) = ε(I3w + Iw) · ε(Iw) = (−1)(3w+1)/2.

On the other side, µ1 =
3w+1

2
comes from Sym3 π[2] and µ4 = w comes from Sym2 π[3]. Since

σ acts on Sym3 π[2] by −1 and on Sym2 π[3] by 1, we have ρ∨ψ(σ) = −1 by Proposition 6.2.1.
By Arthur’s multiplicity formula, m(πψ) = 1 if and only if w ≡ 3mod 4.

Case (ii): ψ = (Sym3 π1 ⊗ π2) ⊕ (Sym2 π1 ⊗ Sym2 π2) ⊕ (π1 ⊗ Sym3 π2) ⊕ [1], where
π1, π2 ∈ Π⊥

alg(PGL2) have motivic weights w1 > w2 respectively. In this case, εψ is trivial.
On the other side, µ1 =

3w1+w2

2
and µ4 = w1 or w1+3w2

2
or 3w1−w2

2
. By Proposition 6.2.1, ρ∨ψ

is trivial if and only if µ4 =
w1+3w2

2
or 3w1−w2

2
.

(1) µ4 = w1+3w2

2
if and only if 3w1−w2

2
> w1+3w2

2
> w1, which is equivalent to 2w2 < w1 <

3w2.
(2) µ4 =

3w1−w2

2
if and only if w1+3w2

2
> 3w1−w2

2
, which is equivalent to w1 < 2w2.

By Arthur’s multiplicity formula, m(πψ) = 1 if and only if w2 < w1 < 3w2 and w1 6= 2w2.
Notice that w1 6= 2w2 holds automatically since w1 is odd.

6.3.5 H = A
[73,15]
1 × A

[5,37]
1

By §4.6.7, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

Sym6 St⊗ Sym2 St + 1⊗ Sym4 St,

and the centralizer of H in F4 is trivial.
For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are three possible endoscopic

types:
(i) (2, (7, 3), (1, 5)). A global Arthur parameter of this type is of the form:

Sym6 π[3]⊕ [5], π ∈ Π⊥
alg(PGL2).

(ii) (2, (5, 1), (3, 7)). A global Arthur parameter of this type is of the form:

Sym4 π ⊕ Sym2 π[7], π ∈ Π⊥
alg(PGL2).

(iii) (2, (21, 1), (5, 1)). A global Arthur parameter of this type is of the form:(
Sym6 π1 ⊗ Sym2 π2

)
⊕ Sym4 π2, π1, π2 ∈ Π⊥

alg(PGL2).
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Proposition∗ 6.3.9. A discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) = H
and m(πψ) = 1 must be of one of the following parameters:

• Sym6 π[3]⊕ [5], where π ∈ Π⊥
alg(PGL2).

• Sym4 π ⊕ Sym2 π[7], where π ∈ Π⊥
alg(PGL2).

•
(
Sym6 π1 ⊗ Sym2 π2

)
⊕Sym4 π2, where π1, π2 ∈ Π⊥

alg(PGL2) have motivic weights w1, w2

respectively such that w2 6= w1 and w2 6= 3w1.

Proof. This follows from the fact that Cψ is trivial. The conditions w2 6= w1 and w2 6= 3w1

in the third case are equivalent to that ψ =
(
Sym6 π1 ⊗ Sym2 π2

)
⊕ Sym4 π2 ∈ ΨAJ(F4).

6.3.6 H = A
[5,37]
1 ×

(
A

[33,26,15]
1 × A

[26,114]
1

)
/µ∆

2

By §4.6.8, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

Sym4 St⊗ 1⊗ 1+ Sym2 St⊗
(
St⊗ St + Sym2 St⊗ 1

)
,

and the centralizer of H in F4 is Z(H) ' Z/2Z.
For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are four possible endoscopic

types:
(i) (3, (6, 2), (5, 1), (3, 3)). A global Arthur parameter of this type is of the form:

Sym4 π1 ⊕ (Sym2 π1 ⊗ π2[2])⊕ Sym2 π1[3], π1, π2 ∈ Π⊥
alg(PGL2).

(ii) (3, (9, 1), (6, 2), (5, 1)). A global Arthur parameter of this type is of the form:

Sym4 π1 ⊕ (Sym2 π1 ⊗ π2[2])⊕ (Sym2 π1 ⊗ Sym2 π2), π1, π2 ∈ Π⊥
alg(PGL2).

(iii) (3, (4, 3), (3, 3), (1, 5)). A global Arthur parameter of this type is of the form:

Sym2 π1[3]⊕ (π1 ⊗ π2[3])⊕ [5], π1, π2 ∈ Π⊥
alg(PGL2).

(iv) (3, (12, 1), (9, 1), (5, 1)). A global Arthur parameter of this type is of the form:

Sym4 π1 ⊕ (Sym2 π1 ⊗ π2 ⊗ π3)⊕ (Sym2 π1 ⊗ Sym2 π3), π1, π2, π3 ∈ Π⊥
alg(PGL2).

For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to

Sym4 St⊗
(
St⊗ St + Sym2 St⊗ 1

)
+ Sym2 St⊗ 1⊗ 1

+1⊗
(
Sym2 St⊗ 1+ 1⊗ Sym2 St + Sym3 St⊗ St

)
.

Proposition∗6.3.10. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:

• Sym4 π1 ⊕ (Sym2 π1 ⊗ π2[2]) ⊕ Sym2 π1[3], where π1, π2 ∈ Π⊥
alg(PGL2) have motivic

weights w1, w2 respectively such that w2 < 2w1 − 1 or w2 > 4w1 + 1.
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• Sym4 π1 ⊕ (Sym2 π1 ⊗ π2[2]) ⊕ (Sym2 π1 ⊗ Sym2 π2), where π1, π2 ∈ Π⊥
alg(PGL2) have

motivic weights w1, w2 respectively and satisfy one of the following conditions:
– 2w1 + 1 < w2 < 4w1 − 1, w2 ≡ 1mod 4;
– w2 < 2w1 − 1 or w2 > 4w1 + 1, and w2 ≡ 3mod 4, w1 6= w2.

• Sym2 π1[3]⊕ (π1 ⊗ π2[3])⊕ [5], where π1, π2 ∈ Π⊥
alg(PGL2) have motivic weights w1, w2

respectively such that w2 > 3w1.
• Sym4 π1 ⊕ (Sym2 π1 ⊗ π2 ⊗ π3) ⊕ (Sym2 π1 ⊗ Sym2 π3), where π1, π2, π3 ∈ Π⊥

alg(PGL2)
have motivic weights w1, w2, w3 respectively such that one of the following conditions
holds:

– w2 > max(3w3, 4w1 + w3);
– 2w1 + w3 < w2 < 4w1 − w3;
– 3w3 < w2 < 2w1 − w3;
– 2w1 + w3 < w2 < min(4w1 + w3, 3w3);
– |4w1 − w3| < w2 < w3 − 2w1;
– |2w1 − w3| < w2 < min(4w1 − w3, 3w3) and w3 6= w1, w3 6= w2.

Proof. We denote the generator of Cψ by γ = (1,−1, 1) ∈ Z(H).
Case (i): ψ = Sym4 π1 ⊕ Sym2 π1 ⊗ π2[2]⊕ Sym2 π1[3], where π1, π2 ∈ Π⊥

alg(PGL2) have
motivic weights w1, w2 respectively. In this case the restriction of f4 along ψ is isomorphic
to (

Sym4 π1 ⊗ π2[2]
)
⊕ Sym4 π1[3]⊕ Sym2 π1 ⊕ Sym2 π2 ⊕ π2[4]⊕ [3].

By Proposition 5.6.4 we have εψ(γ) = ε(Sym4 π1 ⊗ π2) · ε(π2). Notice that

ε(Iw ⊗ Iw′) = ε(Iw+w′ + I|w−w′|) = iw+w
′+|w−w′|+2 = (−1)max(w,w′)+1,

thus

εψ(γ) = ε ((I4w1 + I3w1 + I2w1 + Iw1)⊗ Iw2) = (−1)max(4w1,w2)+max(2w1,w2).

Hence εψ(γ) = 1 if and only if w2 < 2w1 or w2 > 4w1. On the other side, µ1 = 2w1 or
w1+

w2+1
2

. The generator γ of Cψ acts on Sym4 π1 and Sym2 π1[3] by 1 and on Sym2 π1⊗π2[2]
by −1. We also notice that ψ ∈ ΨAJ(F4) implies that w2 /∈ {2w1 ± 1, 4w1 ± 1}.

(1) If w2 < 2w1 − 1, then µ1 = 2w1. Now we have 2w1 > w1 +
w2+1

2
> w1 +

w2−1
2

> w1 + 1
and they are larger than other Hodge weights, thus µ4 = w1 + 1. Hence ρ∨ψ(γ) = 1.

(2) If w2 > 2w1 + 1, then µ1 = w1 +
w2+1

2
. Now

w1 +
w2 + 1

2
> w1 +

w2 − 1

2
> max(2w1,

w2 + 1

2
) > min(2w1,

w2 − 1

2
) ≥ w1 + 1

and they are larger than other weights. So µ4 = 2w1 or w2+1
2
, w2−1

2
. However, if

µ4 = 2w1, then we must have w2−1
2

< 2w1 <
w2+1

2
, which is absurd because there is no

integer between w2−1
2

and w2+1
2

. Hence µ4 =
w2±1

2
and ρ∨ψ(γ) = 1.
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In conclusion, ρ∨ψ(γ) = 1 for any π1, π2. By Arthur’s multiplicity formula, m(πψ) = 1 if and
only if w2 < 2w1 − 1 or w2 > 4w1 + 1.

Case (ii): ψ = Sym4 π1 ⊕ (Sym2 π1 ⊗ π2[2]) ⊕ (Sym2 π1 ⊗ Sym2 π2), where π1, π2 ∈
Π⊥

alg(PGL2) have motivic weights w1, w2 respectively. In this case the restriction of f4 along
ψ is isomorphic to(

Sym4 π1 ⊗ Sym2 π2
)
⊕
(
Sym4 π1 ⊗ π2[2]

)
⊕ Sym3 π2[2]⊕ Sym2 π1 ⊕ Sym2 π2 ⊕ [3].

By Proposition 5.6.4 we have:

εψ(γ) = ε(Sym4 π1 ⊗ π2) · ε(Sym3 π2) = (−1)max(4w1,w2)+max(2w1,w2)+(w2−1)/2.

On the other side, γ acts on Sym4 π1, Sym
2 π1⊗Sym2 π2 by 1 and on Sym2 π1⊗π2[2] by −1.

(1) If w1 > w2,then µ1 = 2w1. Now µ4 must be w1 +
w2−1

2
and we have ρ∨ψ(γ) = −1.

(2) If w1 < w2, then µ1 = w1 + w2. Now ρ∨ψ(γ) = 1 if and only if µ4 comes from Sym4 π1
or Sym2 π1 ⊗ Sym2 π2. We can easily verify that none of the weights of these two
irreducible summands is possible to be µ4.

In conclusion, ρ∨ψ(γ) = −1. By Arthur’s multiplicity formula, for ψ ∈ ΨAJ(F4) the multi-
plicity m(πψ) = 1 if and only if one of the following conditions holds:

• 2w1 + 1 < w2 < 4w1 − 1, w2 ≡ 1mod 4;
• w2 < 2w1 − 1 or w2 > 4w1 + 1, and w2 ≡ 3mod 4, w1 6= w2.
Case (iii): ψ = Sym2 π1[3]⊕ (π1 ⊗ π2[3])⊕ [5], where π1, π2 ∈ Π⊥

alg(PGL2) have motivic
weights w1, w2 respectively. In this case, the representations of SL2(C) in the restriction of
f4 along ψ are all odd dimensional, thus εψ(γ) = 1 by Proposition 5.6.4. On the other side,
γ acts on Sym2 π1[3] by 1 and on π1 ⊗ π2[3] by −1. We have µ1 = w1 + 1 or w1+w2

2
+ 1.

(1) If w1 > w2, then µ1 = w1+1. The condition that ψ ∈ ΨAJ(F4) implies that w1 > w2+4,
thus w1 + 1 > w1 > w1 − 1 > w1+w2

2
+ 1, which are larger than other weights. So

µ4 =
w1+w2

2
+ 1 and ρ∨ψ(γ) = −1.

(2) If w1 < w2, then µ1 = w1+w2

2
+ 1. Similarly, we have w1 < w2 − 4. Now µ4 must be

w1 + 1 or w2−w1

2
+ 1, so ρ∨ψ(γ) = 1 if and only if µ4 =

w2−w1

2
+ 1. This is equivalent to

w2 > 3w1.
By Arthur’s multiplicity formula, m(πψ) = 1 if and only if w2 > 3w1.

Case (iv): ψ = Sym4 π1⊕ (Sym2 π1⊗π2⊗π3)⊕ (Sym2 π1⊗Sym2 π3), where π1, π2, π3 ∈
Π⊥

alg(PGL2) have motivic weights w1, w2, w3 respectively. In this case, εψ(γ) = 1 since the
parameter is tempered. On the other side, γ acts on Sym4 π1 and Sym2 π1 ⊗ Sym2 π3 by 1
and on Sym2 π1 ⊗ π2 ⊗ π3 by −1. We denote the ratios w1/w3, w2/w3 by r1, r2 respectively,
and denote the multiset of elements µ/w3, µ running over the eigenvalues of c∞(ψ), by W̃.
We still order the elements of W̃ by µ1 > µ2 > · · · > µ26. The largest one µ1 must be r1 + 1
or 2r1 or r1 + r2+1

2
.

(1) If r1 < 1, r2 < 1, then µ1 = r1 + 1. Now µ2 = 2r1 or 1 or r1 + r2+1
2

.
(a) If r1 > 1/2 and r2 < 2r1 − 1, then µ2 = 2r1. Now r1 + 1 > 2r1 > r1 +

r2+1
2

>
r1 + 1−r2

2
, which are larger than other 22 elements, thus µ4 = r1 + 1−r2

2
and

ρ∨ψ(γ) = −1.
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(b) If r1 < 1/2 and r2 < 1−2r1, then µ2 = 1. Now ρ∨ψ(γ) = 1 if and only if µ4 = 1−r1,
which is equivalent to |4r1 − 1| < r2.

(c) If r2 > |2r1 − 1|, then µ2 = r1 +
r2+1
2

. Now ρ∨ψ(γ) = 1 if and only if µ4 = 2r1 or
1, which is equivalent to r2 < 4r1 − 1.

(2) If r1 > 1, r2 < 2r1 − 1, then µ1 = 2r1. Now ρ∨ψ(γ) = 1 if and only if µ4 = r1 + 1, which
is equivalent to r2 > 3.

(3) If r2 > 1, r2 > 2r1 − 1, then µ1 = r1 + r2+1
2

. Now µ2 belongs to the (multi)set
{r1 + 1, 2r1, r1 +

r2−1
2
, r2+1

2
}.

(a) If r1 < 1 and r2 < 2r1 + 1, then µ2 = r1 + 1. Now ρ∨ψ(γ) = 1 if and only if
µ4 =

r2+1
2

, which is equivalent to r2 < 4r1 − 1.
(b) If r1 > 1 and r2 < 2r1 + 1, then µ2 = 2r1. Now µ4 = min(r1 + 1, r1 +

r2−1
2

), thus
ρ∨ψ(γ) = 1 if and only if r2 < 3.

(c) If r1 > 1 and r2 > 2r1 + 1, then µ2 = r1 +
r2−1
2

. Now ρ∨ψ(γ) = 1 if and only if
µ4 =

r2±1
2

, which is equivalent to r2 < 4r1 − 1 or r2 > 4r1 + 1.
(d) If r1 < 1 and r2 > 2r1 + 1, then µ2 = r2+1

2
. Now ρ∨ψ(γ) = 1 if and only if

µ4 = r1 +
r2−1
2

or r2+1
2

− r1, which is equivalent to that r2 < min(3, 4r1 + 1) or
r2 > max(3, 4r1 + 1).

In conclusion, by Arthur’s multiplicity formula, m(πψ) = 1 if and only if w1, w2, w3 satisfy
one of the conditions listed in the proposition.

6.3.7 H =
(
A

[5,44,15]
1 × A

[26,114]
1 × A

[26,114]
1

)
/µ∆

2

By §4.6.9, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

1+ 1⊗ St⊗ St + Sym3 St⊗ (St⊗ 1+ 1⊗ St) + Sym4 St⊗ 1⊗ 1,

and the centralizer of H in F4 is Z(H) ' Z/2Z× Z/2Z.
For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are three possible endoscopic

types:
(i) (5, (8, 1), (5, 1), (4, 2), (2, 2), (1, 1)). A global Arthur parameter of this type is of the

form:

Sym4 π1 ⊕ (Sym3 π1 ⊗ π2)⊕ Sym3 π1[2]⊕ π2[2]⊕ [1], π1, π2 ∈ Π⊥
alg(PGL2).

(ii) (5, (4, 1), (2, 4), (2, 4), (1, 5), (1, 1)). A global Arthur parameter of this type is of the
form:

(π1 ⊗ π2)⊕ π1[4]⊕ π2[4]⊕ [5]⊕ [1], π1, π2 ∈ Π⊥
alg(PGL2).

(iii) (5, (8, 1), (8, 1), (5, 1), (4, 1), (1, 1)). A global Arthur parameter of this type is of the
form:

Sym4 π1 ⊕ (Sym3 π1 ⊗ π2)⊕ (Sym3 π1 ⊗ π3)⊕ (π2 ⊗ π3)⊕ [1], π1, π2, π3 ∈ Π⊥
alg(PGL2).
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For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to

1⊗
(
Sym2 St⊗ 1+ 1⊗ Sym2 St

)
+ Sym2 St⊗ 1⊗ 1+ Sym3 St⊗ (St⊗ 1+ 1⊗ St)

+Sym4 St⊗ St⊗ St + Sym6 St⊗ 1⊗ 1

Proposition∗6.3.11. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:

• Sym4 π1 ⊕ (Sym3 π1 ⊗ π2) ⊕ Sym3 π1[2] ⊕ π2[2] ⊕ [1], where π1, π2 ∈ Π⊥
alg(PGL2) have

motivic weights w1, w2 respectively and satisfy one of the following conditions
– w2 < w1 or w2 > 4w1 + 1, and w2 ≡ 3mod 4;
– 3w1 < w2 < 4w1 − 1 and w2 ≡ 1mod 4.

• (π1 ⊗ π2) ⊕ π1[4] ⊕ π2[4] ⊕ [5] ⊕ [1], where π1, π2 ∈ Π⊥
alg(PGL2) have motivic weights

w1 > w2 respectively and w1 ≡ 3mod 4, w2 ≡ 1mod 4, w2 < w1 − 4.
• Sym4 π1⊕(Sym3 π1⊗π2)⊕(Sym3 π1⊗π3)⊕(π2⊗π3)⊕[1], where π1, π2, π3 ∈ Π⊥

alg(PGL2)
have motivic weights w1 and w2 > w3 respectively satisfying one of the following
conditions:

– w1 > w3 and 2w1 − w3 < w2 < 2w1 + w3;
– w3 < 3w1 < w2 < 2w1 + w3;
– w1 < w3 < 3w1, w2 > 4w1 + w3.

Proof. We take a set of generators {σ = (−1, 1, 1), σ1 = (1, 1,−1)} of Cψ = Z(H) ' Z/2Z×
Z/2Z. Let χ1, χ2 be two generators of the character group of Cψ such that χ1(σ) = χ2(σ1) =
−1, χ1(σ1) = χ2(σ) = 1.

Case (i): ψ = Sym4 π1 ⊕ (Sym3 π1 ⊗ π2) ⊕ Sym3 π1[2] ⊕ π2[2] ⊕ [1], where π1, π2 ∈
Π⊥

alg(PGL2) have motivic weights w1, w2 respectively. In this case, the restriction of f4 along
ψ is isomorphic to:

Sym6 π1 ⊕
(
Sym4 π1 ⊗ π2[2]

)
⊕
(
Sym3 π1 ⊗ π2

)
⊕ Sym3 π1[2]⊕ Sym2 π1 ⊕ Sym2 π2 ⊕ [3].

By Proposition 5.6.4 we have:

εψ(σ) = ε(Sym3 π1) = ε(I3w1 + Iw1) = (−1)(3w1+1)/2+(w1+1)/2 = −1,

εψ(σ1) = ε(Sym4 π1 ⊗ π2) · ε(Sym3 π1) = (−1)max(4w1,w2)+max(2w1,w2)+(w2−1)/2.

So εψ = χ1 or χ1χ2. On the other side, the largest weight µ1 is 2w1 or 3w1+w2

2
.

(1) If w1 > w2, then µ1 = 2w1. Now 2w1 >
3w1+w2

2
> 3w1+1

2
> 3w1−1

2
and they are larger

than other weights, thus µ4 =
3w1−1

2
and ρ∨ψ = χ1χ2.

(2) If w1 < w2, then µ1 =
3w1+w2

2
. Now µ2 = 2w1 or w1+w2

2
.

(a) If w2 < 3w1, then µ2 = 2w1. Now µ4 =
w1+w2

2
or 3w1±1

2
, thus ρ∨ψ = 1 or χ2.

(b) If w2 > 3w1, then µ2 = w1+w2

2
. Now µ4 = 2w1 or w2±1

2
, thus ρ∨ = χ1 or χ1χ2.

Notice that µ4 = 2w1 if and only if 2w1 lies between w2+1
2

and w2−1
2

, which can
not happen. So ρ∨ψ = χ1χ2 for any w2 > 3w1 and w2 6= 4w1 ± 1.

79



Hence by Arthur’s multiplicity formula, m(πψ) = 1 if and only if one of the following condi-
tions holds:

• w2 < w1 or w2 > 4w1 + 1, and w2 ≡ 3mod 4;
• 3w1 < w2 < 4w1 − 1, and w2 ≡ 1mod 4.
Case (ii): ψ = (π1 ⊗ π2) ⊕ π1[4] ⊕ π2[4] ⊕ [5] ⊕ [1], where π1, π2 ∈ Π⊥

alg(PGL2) have
motivic weights w1 > w2 respectively. In this case, the restriction of f4 along ψ is isomorphic
to

Sym2 π1 ⊕ Sym2 π2 ⊕ (π1 ⊗ π2[5])⊕ π1[4]⊕ π2[4]⊕ [7]⊕ [3].

By Proposition 5.6.4 we have:

εψ(σ) = ε(π1) · ε(π2) = ε(Iw1) · ε(Iw2) = (−1)(w1+w2)/2+1

εψ(σ1) = ε(π2) = ε(Iw2) = (−1)(w2+1)/2.

On the other side, the condition ψ ∈ ΨAJ(F4) implies that w2 < w1 − 4. Since

w1 + w2

2
>
w1 + 3

2
>
w1 + 1

2
>
w1 − 1

2

and they are larger than other weights, we have µ1 = w1+w2

2
and µ4 = w1−1

2
. The global

component group Cψ acts on π1 ⊗ π2 and π1[4] by χ2 and χ1 respectively, thus by Proposi-
tion 6.2.1 the character ρ∨ψ = χ1χ2. By Arthur’s multiplicity formula, m(πψ) = 1 if and only
if w1 ≡ 3mod 4, w2 ≡ 1mod 4 and w2 < w1 − 4.

Case (iii): ψ = Sym4 π1 ⊕ (Sym3 π1 ⊗ π2) ⊕ (Sym3 π1 ⊗ π3) ⊕ (π2 ⊗ π3) ⊕ [1], where
π1, π2, π3 ∈ Π⊥

alg(PGL2) have motivic weights w1, w2, w3 respectively and we assume that
w2 > w3. In this case εψ is trivial since ψ is tempered. On the other side, Cψ acts on
the four summands Sym4 π1, Sym

3 π1 ⊗ π2, Sym
3 π1 ⊗ π3 and π2 ⊗ π3 by 1, χ1, χ1χ2 and χ2

respectively. Denote the ratios w1/w3, w2/w3 by r1, r2 respectively and the corresponding
multiset by W̃ as in the proof of Proposition 6.3.10. We still order the elements of W̃ by
µ1 > µ2 > · · · > µ26, then by Proposition 6.2.1 the character ρ∨ψ = 1 if and only if µ1 and
µ4 come from the same irreducible summand of ψ. The largest element µ1 is 2r1 or 3r1+r2

2

or r2+1
2

.
(1) If r2 < r1, then µ1 = 2r1. Now 2r1 >

3r1+r2
2

> 3r1+1
2

> 3r1−r2
2

> r1, thus ρ∨ψ is not
trivial.

(2) If r2 > r1 and r1 > 1/3, then µ1 =
3r1+r2

2
.

(a) If r1 > 1, then ρ∨ψ = 1 if and only if µ4 =
r1+r2

2
, which is equivalent to 2r1 − 1 <

r2 < 2r1 + 1.
(b) If r1 < 1, then ρ∨ψ = 1 if and only if µ4 =

r2±r1
2

.
(I) µ4 =

r2+r1
2

if and only if 2r1 < r2+r1
2

< 3r1+1
2

⇔ 3r1 < r2 < 2r1 + 1.
(II) µ4 =

r2−r1
2

if and only if r2−r1
2

> 3r1+1
2

⇔ r2 > 4r1 + 1.
(3) If r1 < 1/3, then µ1 = r2+1

2
. Now r2+1

2
, r2±r1

2
, 3r1+r2

2
are larger than r2−1

2
, so r2−1

2
can

not be µ4 and thus ρ∨ψ 6= 1.
In conclusion, by Arthur’s multiplicity formula, m(πψ) = 1 if and only if w1, w2, w3 satisfy
one of the three conditions in Proposition 6.3.11.
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6.3.8 H =
∏4

i=1 A
[26,114]
1 /µ∆

2

By §4.6.13, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

1⊕2 +
∑
Sym

St⊗ St⊗ 1⊗ 1,

and the centralizer of H in F4 is Z(H) ' Z/2Z× Z/2Z× Z/2Z.
For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are two possible endoscopic

types:
(i) (8, (4, 1), (4, 1), (4, 1), (2, 2), (2, 2), (2, 2), (1, 1), (1, 1)). A global Arthur parameter of

this type is of the form:( ⊕
1≤i<j≤3

πi ⊗ πj

)
⊕

(⊕
1≤i≤3

πi[2]

)
⊕ [1]⊕ [1], π1, π2, π3 ∈ Π⊥

alg(PGL2).

(ii) (8, (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (4, 1), (1, 1), (1, 1)). A global Arthur parameter of
this type is of the form:( ⊕

1≤i<j≤4

πi ⊗ πj

)
⊕ [1]⊕ [1], π1, π2, π3, π4 ∈ Π⊥

alg(PGL2).

For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to∑

Sym

Sym2 St⊗ 1⊗ 1⊗ 1+
∑
Sym

St⊗ St⊗ 1⊗ 1+ St⊗ St⊗ St⊗ St.

Proposition∗6.3.12. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ has the form:

ψ =

( ⊕
1≤i<j≤3

πi ⊗ πj

)
⊕

(⊕
1≤i≤3

πi[2]

)
⊕ [1]⊕ [1],

where π1, π2, π3 ∈ Π⊥
alg(PGL2) have motivic weights w1 > w2 > w3 respectively such that one

of the following conditions holds:
• w1 > w2 + w3 + 1, and w1 ≡ w3 ≡ 3mod 4, w2 ≡ 1mod 4;
• w1 < w2 + w3 − 1, and w1 ≡ w3 ≡ 1mod 4, w2 ≡ 3mod 4.

Proof. We take a set of generators {γ = (−1, 1, 1, 1), γ1 = (1,−1, 1, 1), γ2 = (1, 1,−1, 1)} of
Cψ = Z(H) ' Z/2Z× Z/2Z× Z/2Z.

Case (i): ψ = (
⊕

1≤i<j≤3 πi⊗πj)⊕(
⊕

1≤i≤3 πi[2])⊕[1]⊕[1], where π1, π2, π3 ∈ Π⊥
alg(PGL2)

have motivic weights w1 > w2 > w3 respectively. In this case, the restriction of f4 along ψ is
isomorphic to

(π1 ⊗ π2 ⊗ π3[2])⊕

( ⊕
1≤i<j≤3

πi ⊗ πj

)
⊕

(⊕
1≤i≤3

Sym2 πi

)
⊕

(⊕
1≤i≤3

πi[2]

)
⊕ [3].
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By Proposition 5.6.4 we have:

εψ(γ) = ε(π1) · ε(π1 ⊗ π2 ⊗ π3) = (−1)max(w1,w2+w3)+(w1−1)/2,

εψ(γ1) = ε(π2) · ε(π1 ⊗ π2 ⊗ π3) = (−1)max(w1,w2+w3)+(w2−1)/2,

εψ(γ2) = ε(π3) · ε(π1 ⊗ π2 ⊗ π3) = (−1)max(w1,w2+w3)+(w3−1)/2.

On the other side, the largest element µ1 must be w1+w2

2
and µ4 is the middle one of

{w1+1
2
, w1−1

2
, w2+w3

2
}. Since there is no integer between w1+1

2
and w1−1

2
, we have µ4 6= w2+w3

2
.

So ρ∨ψ is the product of two characters of Cψ coming from π1 ⊗ π2 and π1[2] respectively,
thus ρ∨ψ(γ) = ρ∨ψ(γ2) = 1 and ρ∨ψ(γ1) = −1.

By Arthur’s multiplicity formula, m(πψ) = 1 if and only if one of the following conditions
holds:

• w1 > w2 + w3 + 1, and w1 ≡ w3 ≡ 3mod 4, w2 ≡ 1mod 4;
• w1 < w2 + w3 − 1, and w1 ≡ w3 ≡ 1mod 4, w2 ≡ 3mod 4.
Case (ii): ψ = (

⊕
1≤i<j≤4 πi ⊗ πj) ⊕ [1] ⊕ [1], where π1, π2, π3, π4 ∈ Π⊥

alg(PGL2) have
motivic weights w1 > w2 > w3 > w4 respectively. In this case, εψ is trivial. On the other side,
µ1 must be w1+w2

2
. Notice that Cψ acts on 6 components πi ⊗ πj via 6 different characters,

so ρ∨ψ is trivial if and only if µ4 =
w1−w2

2
. However,

w1 − w2

2
<
w1 − w3

2
<
w1 − w4

2
<
w1 + w4

2
<
w1 + w3

2
<
w1 + w2

2
,

thus ρ∨ψ 6= 1 and m(πψ) = 0.

6.3.9 H = A
[5,37]
1 ×G2

In this case, we need to consider cuspidal representations π ∈ Πo
alg,reg(PGL7) such that the

image of the corresponding irreducible representation LZ → SL7(C) is a compact Lie group
of type G2. This kind of representations correspond to discrete automorphic representations
of the unique semisimple anisotropic Z-group of type G2 with stable tempered type, which
have been studied in [CR15, §8], conditional to the existence of LZ and Arthur’s multiplicity
formula. We denote by ΠG2

alg(PGL7) ⊂ Πo
alg,reg(PGL7) the subset of these representations.

The Hodge weights of a representation π ∈ ΠG2
alg(PGL7) have the form w+ v > w > v, where

w, v are even integers.
By §4.6.4, the restriction of the 26-dimensional irreducible representation J0 of F4 to H

is isomorphic to
Sym2 St⊗ V7 + Sym4 St⊗ 1,

where V7 is the 7-dimensional irreducible representation of G2, and the centralizer of H in
F4 is trivial.

For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are two possible endoscopic
types:

(i) (2, (7, 3), (1, 5)). A global Arthur parameter of this type is of the form:

π[3]⊕ [5], π ∈ ΠG2
alg(PGL7).
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(ii) (2, (21, 1), (5, 1)). A global Arthur parameter of this type is of the form:

(π ⊗ Sym2 τ)⊕ Sym4 τ, π ∈ ΠG2
alg(PGL7), τ ∈ Π⊥

alg(PGL2).

Proposition∗6.3.13. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:

• π[3]⊕ [5], where π ∈ ΠG2
alg(PGL7) has Hodge weights w + v > w > v such that v > 4;

• (π ⊗ Sym2 τ)⊕ Sym4 τ , where π ∈ ΠG2
alg(PGL7) has Hodge weights w + v > w > v and

τ ∈ Π⊥
alg(PGL2) satisfies w(τ) /∈ {w+v

2
, w
2
, v
2
}.

Proof. This follows from the condition ψ ∈ ΨAJ(F4) and the fact that Cψ is trivial.

6.3.10 H =
(
A

[26,114]
1 × A

[26,114]
1 × Sp(2)

)
/µ∆

2

By §4.6.6, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

1+ St⊗ St⊗ 1+ St⊗ 1⊗ V4 + 1⊗ St⊗ V4 + 1⊗ 1⊗ ∧∗V4,

where V4 is the standard representation of Sp(2) and ∧∗V4 is the 5-dimensional irreducible
representation of Sp(2). The centralizer of H in F4 is Z(H) ' Z/2Z× Z/2Z.

For any π ∈ Π
Sp4
alg (PGL4), we denote by ∧∗π the representation in Πo

alg,reg(PGL5) corre-
sponding to the following irreducible representation of LZ:

LZ
ψπ−→ Sp(2)

∧∗
−→ SL5(C).

For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are two possible endoscopic
types:

(i) (5, (8, 1), (5, 1), (4, 2), (2, 2), (1, 1)). A global Arthur parameter of this type is of the
form:

∧∗π ⊕ (π ⊗ τ)⊕ π[2]⊕ τ [2]⊕ [1], π ∈ Π
Sp4
alg (PGL4), τ ∈ Π⊥

alg(PGL2).

(ii) (5, (8, 1), (8, 1), (5, 1), (4, 1), (1, 1)). A global Arthur parameter of this type is of the
form:

∧∗π ⊕ (π ⊗ τ1)⊕ (π ⊗ τ2)⊕ (τ1 ⊗ τ2)⊕ [1], π ∈ Π
Sp4
alg (PGL4), τ1, τ2 ∈ Π⊥

alg(PGL2).

For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to (

Sym2 St⊗ 1+ 1⊗ Sym2 St
)
⊗ 1+ (St⊗ 1+ 1⊗ St)⊗ V4

+St⊗ St⊗ ∧∗V4 + 1⊗ 1⊗ Sym2 V4.

Proposition∗6.3.14. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:
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• ∧∗π⊕(π ⊗ τ)⊕π[2]⊕τ [2]⊕ [1], where π ∈ Π
Sp4
alg (PGL4) has Hodge weights w1 > w2 > 1

and τ ∈ Π⊥
alg(PGL2) has motivic weight v satisfying one of the following conditions:

– w1 < v < w1 + w2 − 1, w1 + w2 ≡ 0mod 4, v ≡ 1mod 4;
– w1 − w2 + 1 < v < w2, w1 + w2 ≡ 0mod 4, v ≡ 1mod 4;
– w2 < v < w1 − w2 − 1, w1 + w2 ≡ 2mod 4, v ≡ 1mod 4;
– v > w1 + w2 + 1, w1 + w2 ≡ 0mod 4, v ≡ 3mod 4;
– v < min(w1 − w2 − 1, w2), w1 + w2 ≡ 0mod 4, v ≡ 3mod 4;
– max(w1 − w2 + 1, w2) < v < w1, w1 + w2 ≡ 2mod 4, v ≡ 3mod 4.

• ∧∗π ⊕ (π ⊗ τ1)⊕ (π ⊗ τ2)⊕ (τ1 ⊗ τ2)⊕ [1], where π ∈ Π
Sp4
alg (PGL4) has Hodge weights

w1 > w2 and τ1, τ2 ∈ Π⊥
alg(PGL2) have motivic weights v1 > v2 respectively satisfying

one of the following conditions:
– v2 < w2 < v1 and w1 − w2 − v2 < v1 < w1 − w2 + v2;
– w2 < v2 < w1 and v1 > w1 + w2 + v2;
– v2 < w1 < v1 < w1 − w2 + v2.

Proof. We take a set of generators {σ = (1, 1,−1), σ1 = (−1, 1, 1)} of Cψ = Z(H) ' Z/2Z×
Z/2Z. Let χ1, χ2 be two generators of the character group of Cψ such that χ1(σ) = χ2(σ1) =
−1 and χ1(σ1) = χ2(σ) = 1.

Case (i): ψ = ∧∗π⊕(π⊗τ)⊕π[2]⊕τ [2]⊕ [1], where π ∈ Π
Sp4
alg (PGL4) has Hodge weights

w1 > w2 > 1 and τ ∈ Π⊥
alg(PGL2) has motivic weight v. Here we assume that Arthur’s

SL2(C) is sent to the first A1-factor of HC. In this case, the restriction of f4 along ψ is
isomorphic to

Sym2 π ⊕ (∧∗π ⊗ τ [2])⊕ (π ⊗ τ)⊕ π[2]⊕ Sym2 τ ⊕ [3].

By Proposition 5.6.4 we have:

εψ(σ) = ε(π) = ε(Iw1 + Iw2) = (−1)(w1+w2)/2+1,

εψ(σ1) = ε(∧∗π ⊗ τ) = (−1)max(w1+w2,v)+max(w1−w2,v)+(v+1)/2.

On the other side, the group Cψ acts on ∧∗π, π ⊗ τ, π[2], τ [2] by 1, χ1χ2, χ1, χ2 respectively.
The largest element µ1 must be w1+w2

2
or w1+v

2
.

(1) If w2 > v, then µ1 =
w1+w2

2
. Now µ4 =

w1±1
2

and ρ∨ψ = χ1.
(2) If w2 < v, then µ1 =

w1+v
2

. Now µ2 is w1+w2

2
or w2+v

2
.

(a) If w1 > v, then µ2 =
w1+w2

2
. Now µ4 =

w1±1
2

and ρ∨ψ = χ2.
(b) If w1 < v, then µ2 =

w2+v
2

. Now µ4 =
v±1
2

and ρ∨ψ = χ1.
By Arthur’s multiplicity formula, m(πψ) = 1 if and only if π and τ satisfy one of the
conditions listed in the proposition.

Case (ii): ψ = ∧∗π ⊕ (π ⊗ τ1) ⊕ (π ⊗ τ2) ⊕ (τ1 ⊗ τ2) ⊕ [1], where π ∈ Π
Sp4
alg (PGL4) has

Hodge weights w1 > w2 and τ1, τ2 ∈ Π⊥
alg(PGL2) have motivic weights v1 > v2 respectively.

In this case εψ is a trivial character. On the other side, since Cψ acts on four non-trivial
irreducible summands of ψ by four different characters, ρ∨ψ = 1 if and only if µ1 and µ4 come
from the same irreducible summand. Now µ1 must be w1+w2

2
or w1+v1

2
or v1+v2

2
.
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(1) If w2 > v1, then µ1 =
w1+w2

2
and µ4 can not be w1−w2

2
, thus ρ∨ψ is not trivial.

(2) If v1 > w2 and w1 > v2, then µ1 = w1+v1
2

. Now ρ∨ψ is trivial if and only if µ4 = w2+v1
2

or v1−w2

2
.

(a) µ4 = v1−w2

2
is equivalent to that v1 − w2 > max(v1 − v2, w1 + w2, w1 + v2). This

holds if and only if v2 > w2 and v1 > w1 + w2 + v2.
(b) µ4 =

w2+v1
2

is equivalent to that w2 + v1 > max(w1 − w2, w1 − v2) and w2 + v1 is
smaller than exactly two of {w1 + w2, v1 + v2, w1 + v2}. This holds in two cases:
w1 < v1 < w1 − w2 + v2 or

w2 > v2, w1 > v1, w1 − w2 − v2 < v1 < w1 − w2 + v2.

(3) If v2 > w1, µ1 =
v1+v2

2
. We have

v1 − v2
2

<
v1 − w1

2
<
v1 − w2

2
<
v1 + w2

2
<
v1 + w1

2
<
v1 + v2

2
,

thus µ4 can not be v1−v2
2

and ρ∨ψ is not trivial.
In conclusion, by Arthur’s multiplicity formula m(πψ) = 1 if and only if one of the following
conditions holds:

• v2 < w2 < v1 and w1 − w2 − v2 < v1 < w1 − w2 + v2;
• w2 < v2 < w1 and v1 > w1 + w2 + v2;
• v2 < w1 < v1 < w1 − w2 + v2.

6.3.11 H =
(
A

[26,114]
1 × Sp(3)

)
/µ∆

2

By §4.6.3, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

St⊗ V6 + 1⊗ V14,

where V6 is the standard 6-dimensional representation of Sp(3), V14 = ∧∗V6 is the 14-
dimensional irreducible representation of Sp(3) that is a sub-representation of ∧2V6. The
centralizer of H in F4 is Z(H) ' Z/2Z.

For any π ∈ Π
Sp6
alg (PGL6), we denote by ∧∗π the representation in Πo

alg,reg(PGL14) corre-
sponding to the following irreducible representation of LZ:

LZ
ψπ−→ Sp(3)

∧∗
−→ SL14(C).

For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there are two possible endoscopic
types:

(i) (2, (14, 1), (6, 2)). A global Arthur parameter of this type is of the form:

∧∗π ⊕ π[2], π ∈ Π
Sp6
alg (PGL6).

(ii) (2, (14, 1), (12, 1)). A global Arthur parameter of this type is of the form:

∧∗π ⊕ (π ⊗ τ), π ∈ Π
Sp6
alg (PGL6), τ ∈ Π⊥

alg(PGL2).
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For this subgroup H of F4, the restriction of the adjoint representation f4 of F4 to H is
isomorphic to

Sym2 St⊗ 1+ St⊗ V′
14 + 1⊗ Sym2 V6,

where V′
14 is another 14-dimensional irreducible representation of Sp(3) that is not equivalent

to V14 = ∧∗V6.

Proposition∗6.3.15. For a discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying H(ψ) =
H, the multiplicity m(πψ) = 1 if and only if ψ is one of the following parameters:

• ∧∗π ⊕ π[2], where π ∈ Π
Sp6
alg (PGL6) has Hodge weights w1 > w2 > w3 > 1 and one of

the following conditions holds:
– w1 > w2 + w3 + 1 and w1 + w2 + w3 ≡ 3mod 4;
– w1 < w2 + w3 − 1 and w1 + w2 + w3 ≡ 1mod 4.

• ∧∗π ⊕ (π ⊗ τ), where π ∈ Π
Sp6
alg (PGL6) has Hodge weights w1 > w2 > w3 and τ ∈

Π⊥
alg(PGL2) has motivic weight v satisfying one of the following conditions:
– |w1 − w2 − w3| < v < w3;
– w1 − w2 + w3 < v < w2;
– w3 < v < min(w2, w1 − w2 − w3);
– max(w2, w1 − w2 − w3) < v < w1 − w2 + w3;
– w1 < v < w1 + w2 − w3;
– v > w1 + w2 + w3.

Proof. We denote the generator (−1, 1) ∈ Z(H) = Cψ by γ.
Case (i): ψ = ∧∗π⊕π[2], where π ∈ Π

Sp6
alg (PGL6) has Hodge weights w1 > w2 > w3 > 1.

In this case, the restriction of f4 along ψ is isomorphic to

Sym2 π ⊕ π′[2]⊕ [3],

where π′ ∈ Π⊥
alg(PGL14) corresponds to

LZ
ψπ−→ Sp(3)

V′
14−→ SL14(C).

Notice that ∧3V6 ' V′
14 ⊕ V6, thus the Hodge weights of π′ are

±w1,±w2,±w3,±w1 ± w2 ± w3.

By Proposition 5.6.4 we have:

εψ(γ) = ε
(
Iw1 + Iw2 + Iw3 + Iw1+w2+w3 + Iw1+w2−w3 + Iw1−w2+w3 + I|w1−w2−w3|

)
= (−1)(w1+w2+w3+1)/2+max(w1,w2+w3).

On the other side, γ acts on ∧∗π by 1 and on π[2] by −1. The largest element µ1 must be
w1+w2

2
. Now µ4 = w1±1

2
, thus ρ∨ψ(γ) = −1. By Arthur’s multiplicity formula, m(πψ) = 1 if

and only if one of the following conditions holds:
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• w1 > w2 + w3 + 1 and w1 + w2 + w3 ≡ 3mod 4;
• w1 < w2 + w3 − 1 and w1 + w2 + w3 ≡ 1mod 4.
Case (ii): ψ = ∧∗π ⊕ (π ⊗ τ), where π ∈ Π

Sp6
alg (PGL6) has Hodge weights w1 > w2 > w3

and τ ∈ Π⊥
alg(PGL2) has motivic weight v. In this case εψ is trivial. On the other side, the

largest µ1 must be w1+w2

2
or w1+v

2
.

(1) If v < w2, then µ1 =
w1+w2

2
.

(a) If v < w3, then µ4 is the middle one in {w2+w3

2
, w1+v

2
, w1−v

2
}. Hence ρ∨ψ = 1 if and

only if µ4 =
w2+w3

2
, which is equivalent to v > |w1 − w2 − w3|.

(b) If v > w3, then µ4 is the middle one in {w2+v
2
, w1+w3

2
, w1−w3

2
}. Hence ρ∨ψ = 1 if and

only if µ4 =
w1±w3

2
, which is equivalent to v > w1 −w2 +w3 or v < w1 −w2 −w3.

(2) If v > w2, then µ1 =
w1+v

2
.

(a) If v < w1, then µ4 is the middle one in {w2+v
2
, w1+w3

2
, w1−w3

2
}. Hence ρ∨ψ = 1 if and

only if µ4 =
w2+v

2
, which is equivalent to w1 − w2 − w3 < v < w1 − w2 + w3.

(b) If v > w1, then µ4 is the middle one in {w1+w2

2
, v+w3

2
, v−w3

2
}. Hence ρ∨ψ = 1 if and

only if µ4 =
v±w3

2
, which is equivalent to v > w1 + w2 + w3 or v < w1 + w2 − w3.

In conclusion, m(πψ) = 1 if and only if one of the conditions on π, τ listed in the proposition
is satisfied.

6.3.12 H = Spin(8)

By §4.6.5, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

1⊕2 +V8 +V+
Spin +V−

Spin,

where V8 is the 8-dimensional vector representation of Spin(8), i.e. the composition of
Spin(8) → SO(8) with the standard 8-dimensional representation of SO(8), and V±

Spin are
two 8-dimensional spinor representations. The centralizer of H in F4 is Z(H) ' Z/2Z×Z/2Z.

For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there is only one possible
endoscopic type: (5, (8, 1), (8, 1), (8, 1), (1, 1), (1, 1)). A global Arthur parameter of this type
is of the form:

ψ = π ⊕ Spin+ π ⊕ Spin− π ⊕ [1]⊕ [1], π ∈ ΠSO8
alg (PGL8),

where we lift ψπ : LZ ↠ SO(8) → SO8(C) to ψ̃π : LZ → Spin8(C), and Spin∗ π, ∗ = ± is the
representation corresponding to

LZ
ψ̃π−→ Spin8(C)

V ∗
Spin−→ SL8(C).

Proposition∗ 6.3.16. For any discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying
H(ψ) = H, we have m(πψ) = 0.

Proof. Let ψ = π⊕ Spin+ π⊕ Spin− π⊕ [1]⊕ [1], where π ∈ ΠSO8
alg (PGL8) has Hodge weights

2w1 > 2w2 > 2w3 > 2w4. The global component group Cψ ' Z/2Z × Z/2Z and it acts on
π, Spin+ π, Spin− π by three different characters.
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Since εψ is trivial, by Arthur’s trace formula m(πψ) = 1 if and only if ρ∨ψ = 1, which
is equivalent to that µ1 and µ4 come from the same irreducible summand of ψ by Proposi-
tion 6.2.1.

In this case, the largest element µ1 must be w1 or w1+w2+w3+w4

2
.

(1) If w1 > w2 + w3 + w4, then µ1 = w1. Now we have

w2 <
w1 + w2 − w3 + w4

2
<
w1 + w3 + w3 − w4

2
<
w1 + w2 + w3 + w4

2
< µ1,

thus µ4 does not come from π. Hence ρ∨ψ is not trivial.
(2) If w1 < w2 + w3 + w4, then µ1 =

w1+w2+w3+w4

2
. Now we have

w1 − w2 + w3 − w4

2
<
w1 + w2 − w3 − w4

2
< min

(
w2,

w1 + w2 ± (w3 − w4)

2

)
< µ1

and
|w1 − w2 − w3 + w4|

2
≤ max

(
w4,

−w1 + w2 + w3 + w4

2

)
is also smaller than at least 4 weights, hence

µ4 /∈
{w1 − w2 + w3 − w4

2
,
w1 + w2 − w3 − w4

2
,
|w1 − w2 − w3 + w4|

2

}
.

So µ4 does not come from Spin+ π and ρ∨ψ is not trivial.
In conclusion, by Arthur’s multiplicity formula the multiplicity m(πψ) is always 0.

6.3.13 H = Spin(9)

By §4.6.2, the restriction of the 26-dimensional irreducible representation J0 of F4 to H
is isomorphic to

1+V9 +VSpin,

where V9 is the standard representation of Spin(9), VSpin is the 16-dimensional spinor rep-
resentations. The centralizer of H in F4 is Z(H) ' Z/2Z.

For ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1, there is only one possible
endoscopic type: (3, (16, 1), (9, 1), (1, 1)). A global Arthur parameter of this type is of the
form:

ψ = π ⊕ Spin π ⊕ [1], π ∈ ΠSO9
alg (PGL9),

where we lift ψπ : LZ ↠ SO(9) → SO9(C) to ψ̃π : LZ → Spin9(C), and Spin π is the
representation corresponding to

LZ
ψ̃π−→ Spin9(C)

VSpin−→ SL16(C).

Proposition∗ 6.3.17. A discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfies H(ψ) = H
and m(πψ) = 1 if and only if ψ = π⊕Spin π⊕ [1], where π ∈ ΠSO9

alg (PGL9) has Hodge weights
w1 > w2 > w3 > w4 satisfying w2 + w3 − w4 < w1 < w2 + w3 + w4.
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Proof. Let ψ = π⊕Spin π⊕ [1], where π ∈ ΠSO9
alg (PGL9) has Hodge weights w1 > w2 > w3 >

w4. The global component group Cψ is a cyclic 2-group, and it acts on π trivially and on
Spin π by its non-trivial character.

Since the parameter is tempered, εψ is trivial. By Arthur’s multiplicity formula, m(πψ) =
1 if and only if ρ∨ψ = 1, which is equivalent to that µ1 and µ4 come from the same irreducible
summand of ψ by Proposition 6.2.1. In this case, the largest element µ1 =

w1

2
or w1+w2+w3+w4

4
.

(1) If w1 > w2+w3+w4, then µ1 =
w1

2
. By our discussion in the proof of Proposition 6.3.16,

µ4 does not come from π, thus ρ∨ψ is not trivial.
(2) If w1 < w2 + w3 + w4, then µ1 = w1+w2+w3+w4

4
. Now µ4 = max

(
w2

2
, w1+w2−w3+w4

4

)
.

Hence ρ∨ψ is trivial if and only if w1 + w4 > w2 + w3.
In conclusion, m(πψ) = 1 if and only if w2 + w3 − w4 < w1 < w2 + w3 + w4.

6.3.14 H = F4

For stable tempered parameters, the component group is trivial and as a direct conse-
quence we have:

Proposition∗ 6.3.18. For any discrete global Arthur parameter ψ ∈ ΨAJ(F4) satisfying
H(ψ) = F4, we have m(πψ) = 1.

6.4 Classification of representations contributing to AVλ
(F4)

Recall that in §5.1, for each irreducible representation Vλ with highest weight λ of F4 =
F4(R), we have defined its multiplicity space in Ldisc(F4):

AVλ(F4) = HomF4(R)(Vλ,Ldisc(F4)
F4,I(Ẑ)),

which parametrizes level one discrete automorphic representation π of F4 such that π∞ ' Vλ.
We have a dimension formula Corollary 5.1.8 for this space. Now with results in §6.3,
we can study the discrete global Arthur parameters ψ ∈ ΨAJ(F4) whose corresponding
representation πψ ∈ Π(F4) has multiplicity 1 in Ldisc(F4) and contributes to AVλ(F4).

According to Lemma 5.1.5, we have:

dimAVλ(F4) =
∑

π∈Π(F4), π∞≃Vλ

m(π).

Using discrete global Arthur parameters, we rewrite this formula as

dimAVλ(F4) =
∑

ψ∈ΨAJ(F4), c∞(ψ)=c∞(Vλ)

m(πψ) =
∑

ψ∈ΨAJ(F4), c∞(ψ)=λ+ρ

m(πψ),

where ρ is the half sum of positive roots of F4.
If the endoscopic type of ψ ∈ ΨAJ(F4) is not stable, i.e. H(ψ) is the conjugacy class of

a proper subgroup of F4 = F4(R), then it must have one of the types listed in §6.3. For
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each subgroup H of F4 listed in Theorem 4.6.7, we can determine the discrete global Arthur
parameters ψ ∈ ΨAJ(F4) satisfying H(ψ) = H and m(πψ) = 1. The difference

dimAVλ(F4)−# {ψ ∈ ΨAJ(F4) |H(ψ) 6= F4, c∞(ψ) = ρ+ λ,m(πψ) = 1} (6.2)

is the number of discrete automorphic representations π of F4 with archimedean component
π∞ ' Vλ whose global Arthur parameter is tempered and stable. In other words:

Proposition∗ 6.4.1. Let λ be a dominant weight of F4, we define the number

F4(λ) := # {π ∈ Πcusp(PGL26) | c∞(π) = r0(λ+ ρ) ∈ sl26,ss,H(π) ' F4} ,

where r0 : f4 → sl26 is the 26-dimensional irreducible representation of f4, and define w(λ)
to be twice the maximal eigenvalue of λ+ ρ. Then we have a formula for the number F4(λ),
and we list nonzero F4(λ) for all the dominant weights λ such that w(λ) ≤ 44 in Table 11.

Proof. The formula for F4(λ) follows from (6.2) and our classifications in §6.3. This formula
involves the numbers of elements in one of the following sets with certain Hodge weights:

Π⊥
alg(PGL2),Π

Sp4
alg (PGL4),Π

Sp6
alg (PGL6),Π

G2
alg(PGL7),Π

SO9
alg (PGL9).

For Π⊥
alg(PGL2), this number is related to the dimension of cusp forms for SL2(Z), as ex-

plained in Example 5.4.6. For other four sets, we can find some tables in [CR] and [CT].
A [PARI/GP] program to compute F4(λ) for dominant weights λ satisfying w(λ) ≤ 60 is
provided in [Sha].

Remark 6.4.2. The formula for F4(λ) has too many terms, thus it is not reasonable to write
it down here. However, under some hypothesis on λ, many terms vanish and this formula
becomes much simpler. For example, if

• λi > 0 for i = 1, 2, 3, 4,
• λ1 > λ2 + λ3 + λ4 + 3,
• and λ3, λ4 are both odd,

then we have the following formula:

F4(λ) = dimAVλ(F4)−O∗(λ′1, λ
′
2, λ

′
3, λ

′
4),

where O∗(w1, w2, w3, w4) is the number of equivalence classes of level one cuspidal orthogonal
representations of PGL9 with Hodge weights w1 > w2 > w3 > w4 > 0, and

λ′1 = 2λ1 + 6λ2 + 4λ3 + 2λ4 + 14, λ′2 = 2λ1 + 2λ2 + 2λ3 + 2λ4 + 8,

λ′3 = 2λ1 + 2λ2 + 2λ3 + 6, λ′4 = 2λ1 + 2λ2 + 4.

In Table 11, we find that the smallest w(λ) for λ such that F4(λ) 6= 0 is 36 and the
corresponding dominant weight is λ = $1 +2$2 +2$4. We are now going to prove this fact
without using Theorem 6.3.1, in order to give readers who skip the proof of Theorem 6.3.1
an example of how we apply Arthur’s conjectures.
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Proposition∗ 6.4.3. There is a level one cuspidal automorphic representation π of PGL26

with motivic weight 36, such that the Sato-Tate group H(π) of π is isomorphic to the compact
Lie group F4.

Proof. We fix λ = $1 + 2$2 + 2$4. In Table 6, we find that dimAVλ(F4) = 1. We denote
the unique automorphic representation contributing to AVλ(F4) by π0 and its corresponding
discrete global Arthur parameter by ψ0. The eigenvalues of c∞(π0) = λ+ ρ are:

−18,−16,−13,−12,−9,−9,−7,−6,−5,−4,−3,−2, 0, 0, 2, 3, 4, 5, 6, 7, 9, 9, 12, 13, 16, 18.

Now it suffices to show that H(ψ0) = F4.
We can exclude some possibilities of H(ψ0) and endoscopic types by an argument of

motivic weights. For example, if H(ψ0) = A
[17,9]
1 and ψ0 = Sym16 π ⊕ Sym8 π for some

π ∈ Π⊥
alg(PGL2), then w(π0) = 16w(π) ≥ 16× 11 = 176, which contradicts with w(π0) = 36.

We also notice that 1 is not an eigenvalue of c∞(π0), thus ψ0 does not have irreducible
summands of the form

π[d], where π ∈ Π⊥
alg(PGLn), n ≡ 1mod 2 and d ≥ 3.

Now we list all possible types for ψ0:
(1) ψ0 is a stable and tempered parameter;
(2) ψ0 = (

⊕
1≤i<j≤3 πi ⊗ πj)⊕ (

⊕
1≤i≤3 πi[2])⊕ [1]⊕ [1], π1, π2, π3 ∈ Π⊥

alg(PGL2);
(3) ψ0 = (

⊕
1≤i<j≤4 πi ⊗ πj)⊕ [1]⊕ [1], π1, π2, π3, π4 ∈ Π⊥

alg(PGL2);
(4) ψ0 = ∧∗π ⊕ (π ⊗ τ)⊕ π[2]⊕ τ [2]⊕ [1], π ∈ Π

Sp4
alg (PGL4), τ ∈ Π⊥

alg(PGL2);
(5) ψ0 = ∧∗π ⊕ (π ⊗ τ1)⊕ (π ⊗ τ2)⊕ (τ1 ⊗ τ2)⊕ [1], π ∈ Π

Sp4
alg (PGL4), τ1, τ2 ∈ Π⊥

alg(PGL2);
(6) ψ0 = ∧∗π ⊕ π[2], π ∈ Π

Sp6
alg (PGL6);

(7) ψ0 = ∧∗π ⊕ (π ⊗ τ), π ∈ Π
Sp6
alg (PGL6), τ ∈ Π⊥

alg(PGL2);
(8) ψ0 = π ⊕ Spin+ π ⊕ Spin− π ⊕ [1]⊕ [1], π ∈ ΠSO8

alg (PGL8);
(9) ψ0 = π ⊕ Spin π ⊕ [1], π ∈ ΠSO9

alg (PGL9).
The definitions of some notations like ∧∗, Spin± can be found in §6.3. Now we are going to
show that ψ0 can not be of the types listed above except (1).

Type (2): The Hodge weights of the irreducible summand πi[2], i = 1, 2, 3 are w(πi)± 1,
thus there are two consecutive integers w(πi)±1

2
in the eigenvalues of c∞(π0). The possible

w(πi)’s are 5, 7, 9, 11, 13, 25. However, Π⊥
alg(PGL2) contains no representations with motivic

weights 5, 7, 9, 13, thus we are unable to find three different w(πi). If πi ' πj for some i, j,
then πi ⊗ πj has two zero weights, which is a contradiction!

Type (3): By the same argument for type (2), ψ0 can not be of this type.
Type (4): Denote the Hodge weights of π ∈ Π

Sp4
alg (PGL4) by w1 > w2. By a similar

argument for type (2), we can see that w1, w2 ∈ {5, 7, 9, 11, 13, 25}. Via the help of [CR15,
Table 5], we have w1 = 25 and w2 ∈ {5, 7, 9}, thus w(τ) must be 11. Since (w1 + w2)/2 has
to be an eigenvalue of c∞(π∞), the smaller Hodge weight w2 can only be 7.

Now we use Arthur’s multiplicity formula. In this case

H(ψ0) =
(
A

[26,114]
1 × A

[26,114]
1 × Sp(2)

)
/µ∆

2 ,
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and by §4.6.6 the global component group Cψ0 ' Z/2Z×Z/2Z. We take a set of generators
{σ = (1, 1,−1), σ1 = (−1, 1, 1)} of Cψ0 . The restriction of the adjoint representation f4 of F4

along ψ0 is isomorphic to

Sym2 π ⊕ (∧∗π ⊗ τ [2])⊕ (π ⊗ τ)⊕ π[2]⊕ Sym2 τ ⊕ [3].

By Proposition 5.6.4 we have:

εψ0(σ) = ε(π) = ε(I7) · ε(I25) = −1.

On the other side µ1 = 36 comes from π ⊗ τ and µ4 = 24 comes from π[2]. The element
σ acts on π ⊗ τ and π[2] both by −1, thus ρ∨ψ0

(σ) = 1 by Proposition 6.2.1. By Arthur’s
multiplicity formula, the corresponding representation has multiplicity 0 in Ldisc(F4).

Type (5): Denote the Hodge weights of π ∈ Π
Sp4
alg (PGL4) by w1 > w2, and assume that

w(τ1) > w(τ2). Since 36 ≥ w1 + w(τ1) ≥ w1 + 15, we have w1 ≤ 21, thus (w1, w2) = (19, 7)
or (21, 5), (21, 9), (21, 13) by [CR15, Table 5]. We also need (w1 ±w2)/2 to be eigenvalues of
c∞(π0), so (w1, w2) = (19, 7). However, the equalities 36 = w1 + w(τ1) and 32 = w1 + w(τ2)
imply that w(τ1) = 17,w(τ2) = 13, which contradicts with the non-existence of representa-
tions in Π⊥

alg(PGL2) with Hodge weight 13.
Type (6): Denote the Hodge weights of π ∈ Π

Sp6
alg (PGL6) by w1 > w2 > w3. We have

three pairs of consecutive integers wi±1
2

in the eigenvalues of c∞(π0), thus for i = 1, 2, 3 we
have wi ∈ {5, 7, 9, 11, 13, 25}. By [CR15, Table 6], (w1, w2, w3) must be (25, 13, 7). However,
∧∗π has 38 as its weight, which is a contradiction.

Type (7): Denote the Hodge weights of π ∈ Π
Sp6
alg (PGL6) by w1 > w2 > w3. Since

36 ≥ w1 + w(τ) ≥ w1 + 11, we have 23 ≤ w1 ≤ 25. Combining 36 ≥ w1 + w2 with [CR15,
Table 6], we get (w1, w2, w3) = (23, 13, 5). However, w(τ) = 32 − w1 = 9 < 11, which is a
contradiction.

Type (8): Denote the Hodge weights of π ∈ ΠSO8
alg (PGL8) by w1 > w2 > w3 > w4. The

multiset
{±w1/2,±w2/2,±w3/2,±w4/2,

±w1 ± w2 ± w3 ± w4

4
, 0, 0}

coincides with the multiset of eigenvalues of c∞(π0). The solutions to this system of equations
are

(w1, w2, w3, w4) = (26, 24, 18, 4), (32, 18, 12, 10), (36, 14, 8, 6).

By the method of Chenevier-Taïbi in [CT20], there are no representations in ΠSO8
alg (PGL8)

with these Hodge weights.
Type (9): By the same argument for type (9), we get the Hodge weights of π ∈

ΠSO9
alg (PGL9):

(w1, w2, w3, w4) = (26, 24, 18, 4), (32, 18, 12, 10), (36, 14, 8, 6).

Again by the method in [CT20], there are no representations in ΠSO9
alg (PGL9) with these

Hodge weights.
In conclusion, the discrete global Arthur parameter ψ0 is a stable and tempered parame-

ter, i.e. H(ψ0) = F4. Composing this ψ0 with the 26-dimensional irreducible representation
r0 : F̂4(C) → SL26(C), we get an irreducible 26-dimensional representation of LZ, and its
corresponding cuspidal representation of PGL26 is the desired one.
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For each dominant weight λ of F4, we define Ψλ(F4) to be the set

{ψ ∈ ΨAJ(F4) | πψ ∈ Πdisc(F4) and (πψ)∞ ' Vλ} .

In Table 9 and Table 10, we list the elements of Ψλ(F4) for weights λ such that w(λ) ≤ 36
and Ψλ(F4) 6= ∅, where we use the following notations:

Notation 6.4.4. For a representation π in Π
Sp2n
alg (PGL2n), n = 1, 2, 3 with Hodge weights

w1 > w2 > · · · > wn, we denote it by ∆w1,...,wn . If there are k ≥ 1 equivalence classes
of cuspidal representations with these Hodge weights, we give them a superscript ∆

(k)
w1,...,wn ,

meaning that in this case we have k different choices of cuspidal representations. Similarly,
for k different representations π in ΠSO9

alg (PGL9) or ΠG2
alg(PGL7) with Hodge weights w1 >

· · · > wn, where n = 3 or 4, we denote them by ∆
(k)
w1,...,wn,0

and omit the superscript when
k = 1, i.e. the cuspidal representation with these Hodge weights is unique up to equivalence.

6.5 Some related problems
In this subsection we explain some representation-theoretic problems motivated by our

conjectural classification of discrete global Arthur parameters for F4.

6.5.1 Theta correspondence between PGL2 and F4

Inside an exceptional group E7,3 of Lie type E7 and Q-rank 3, which is split over every
finite prime p, there is a reductive dual pair PGL2 ×F4, so we have an exceptional theta
correspondence between representations of PGL2 and F4.

For a level one cuspidal automorphic representation π ∈ Π⊥
alg(PGL2), by Savin’s work on

this exceptional theta correspondence [Sav94], if the theta lift Θ(π) of π to F4 is nonzero, then
its corresponding discrete global Arthur parameter is ψ = π[6]⊕[9]⊕[5]. By Proposition 6.3.6,
we see that m(πψ) is always 1, admitting Arthur’s conjectures. This predicts that the global
theta lift Θ(π) is nonzero for any π ∈ Π⊥

alg(PGL2), and we will prove this result in another
paper in progress.
Remark 6.5.1. For π ∈ Π⊥

alg(PGL2), the archimedean theta lift of π∞ is isomorphic to the
irreducible representation Vnϖ4 of F4 for some n. For readers interested in this exceptional
theta correspondence, we list in Table 7 the dimensions of VF4,I(Z)

nϖ4 and V
F4,E(Z)
nϖ4 for n ≤ 40.

6.5.2 Theta correspondence between G2 and F4

Inside an exceptional group E8,4 of Lie type E8 and Q-rank 4, there is a reductive dual
pair G2 × F4, where G2 is the generic fiber of the split Chevalley group of Lie type G2.

In [Dal23], Dalal classifies level one quaternionic discrete automorphic representations
of G2. The exceptional theta correspondence from G2 to F4 is functorial, so for a level
one quaternionic discrete automorphic representation of G2, if its global theta lift to F4

is nonzero, then we can describe the corresponding discrete global Arthur parameters in
ΨAJ(F4). The discrete global Arthur parameters of F4 involving in this correspondence are:

• Sym2 π[3]⊕ π[4]⊕ π[2]⊕ [5], π ∈ Π⊥
alg(PGL2),
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• Sym2 π1[3]⊕ (π1 ⊗ π2[3])⊕ [5], where π1, π2 ∈ Π⊥
alg(PGL2) satisfy w(π2) = 3w(π1) + 2,

• and π[3]⊕ [5], where π ∈ ΠG2
alg(PGL7).

According to Proposition 6.3.7, Proposition 6.3.10 and Proposition 6.3.13, for every ψ among
these discrete global Arthur parameters, we have m(πψ) = 1. This predicts that the global
theta lift of any level one quaternionic discrete automorphic representation of G2 to F4 is
nonzero, which is proved by Pollack in [Pol23, §8].
Remark 6.5.2. For any quaternionic discrete series π of G2(R), the archimedean theta lift of π
is isomorphic to the irreducible representation Vnϖ3 of F4 for some n. For readers interested
in this exceptional theta correspondence, we list in Table 8 the dimensions of VF4,I(Z)

nϖ3 and
V

F4,E(Z)
nϖ3 for n ≤ 30.
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A Figures and tables



4 2 2 −3 −1 −1 −1 −3 −3 −3 −2 −2 −2 −2 −2 −4 −4 −4 −4 −2 −2 −2 −2 −4 −4 −4 −4
2 4 2 −2 −2 −2 −2 −4 −4 −4 −4 −3 −1 −1 −1 −3 −3 −3 −2 −2 −2 −2 −2 −4 −4 −4 −4
2 2 4 −2 −2 −2 −2 −4 −4 −4 −4 −2 −2 −2 −2 −4 −4 −4 −4 −3 −1 −1 −1 −3 −3 −3 −2
−3 −2 −2 5 1 1 1 4 4 4 2 2 2 2 2 4 4 4 4 2 2 2 2 4 4 4 4
−1 −2 −2 1 5 1 1 4 4 4 4 2 0 2 2 2 2 2 3 2 0 0 0 2 2 2 0
−1 −2 −2 1 1 5 1 4 2 2 4 2 0 0 2 2 2 2 1 2 2 0 0 2 3 3 2
−1 −2 −2 1 1 1 5 2 4 2 4 2 0 0 0 2 2 2 1 2 2 2 0 3 2 3 2
−3 −4 −4 4 4 4 2 8 6 6 6 4 2 2 3 5 5 6 5 4 2 2 2 5 6 5 4
−3 −4 −4 4 4 2 4 6 8 6 6 4 2 3 2 6 5 5 5 4 2 2 2 5 5 6 4
−3 −4 −4 4 4 2 2 6 6 8 6 4 2 3 3 5 6 5 5 4 2 2 2 6 5 5 4
−2 −4 −4 2 4 4 4 6 6 6 8 4 0 2 2 4 4 4 3 4 3 1 1 5 5 5 3
−2 −3 −2 2 2 2 2 4 4 4 4 5 1 1 1 4 4 4 2 2 2 2 2 4 4 4 4
−2 −1 −2 2 0 0 0 2 2 2 0 1 5 1 1 4 4 4 4 2 0 2 2 2 2 2 3
−2 −1 −2 2 2 0 0 2 3 3 2 1 1 5 1 4 2 2 4 2 0 0 2 2 2 2 1
−2 −1 −2 2 2 2 0 3 2 3 2 1 1 1 5 2 4 2 4 2 0 0 0 2 2 2 1
−4 −3 −4 4 2 2 2 5 6 5 4 4 4 4 2 8 6 6 6 4 2 2 3 5 5 6 5
−4 −3 −4 4 2 2 2 5 5 6 4 4 4 2 4 6 8 6 6 4 2 3 2 6 5 5 5
−4 −3 −4 4 2 2 2 6 5 5 4 4 4 2 2 6 6 8 6 4 2 3 3 5 6 5 5
−4 −2 −4 4 3 1 1 5 5 5 3 2 4 4 4 6 6 6 8 4 0 2 2 4 4 4 3
−2 −2 −3 2 2 2 2 4 4 4 4 2 2 2 2 4 4 4 4 5 1 1 1 4 4 4 2
−2 −2 −1 2 0 2 2 2 2 2 3 2 0 0 0 2 2 2 0 1 5 1 1 4 4 4 4
−2 −2 −1 2 0 0 2 2 2 2 1 2 2 0 0 2 3 3 2 1 1 5 1 4 2 2 4
−2 −2 −1 2 0 0 0 2 2 2 1 2 2 2 0 3 2 3 2 1 1 1 5 2 4 2 4
−4 −4 −3 4 2 2 3 5 5 6 5 4 2 2 2 5 6 5 4 4 4 4 2 8 6 6 6
−4 −4 −3 4 2 3 2 6 5 5 5 4 2 2 2 5 5 6 4 4 4 2 4 6 8 6 6
−4 −4 −3 4 2 3 3 5 6 5 5 4 2 2 2 6 5 5 4 4 4 2 2 6 6 8 6
−4 −4 −2 4 0 2 2 4 4 4 3 4 3 1 1 5 5 5 3 2 4 4 4 6 6 6 8


Figure 1: The gram matrix of (JZ, 〈 , 〉E) in the basis B given in (2.6)
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σ1 =



1 2 1 0 −1 0 −2 −1 −2 −1 −2 −1 0 −1 0 −1 −1 −1 −1 −1 −1 −1 −1 −2 −2 −1 −1
1 1 1 −1 0 −1 −1 −1 −1 −1 −1 0 0 −1 −1 −1 −1 0 −1 −1 −1 −1 0 −2 −1 −1 −1
1 2 1 −1 0 −2 −1 −2 −1 −1 −2 −1 0 0 0 −1 −1 −1 0 0 −2 −1 −1 −2 −2 −1 −2
−1 −2 −1 1 0 2 2 2 1 1 2 1 0 0 1 1 2 1 1 1 2 2 0 3 2 1 2
−1 −1 −1 1 −1 1 1 1 0 1 1 0 1 0 1 1 2 1 1 1 2 1 1 2 2 1 2
0 0 −1 0 −1 1 1 0 0 0 1 −1 0 0 0 0 0 0 0 1 1 −1 0 0 1 1 0
0 0 −1 1 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 1 0 1 0 0
1 1 1 −1 1 −2 −1 −1 0 0 −1 0 0 0 −1 −1 −1 −1 −1 −1 −2 −1 0 −2 −2 −2 −2
0 1 1 −1 0 −1 −1 −2 −1 −1 −1 −1 −1 0 −1 −1 −2 −1 −1 −1 0 −1 −1 −1 −1 0 −1
1 1 0 0 −1 −1 0 −1 0 −1 −1 −1 1 0 −1 0 −1 0 0 0 −1 −1 0 −2 −1 0 −1
0 0 1 −1 1 0 −1 0 −1 −1 −1 1 −1 −1 1 −1 0 0 0 −1 −1 1 −1 0 −1 −1 0
−1 −3 −1 1 0 2 3 2 3 1 3 2 0 1 −1 2 1 1 0 1 2 2 2 3 3 2 3
−1 −2 −1 1 2 2 2 3 3 1 3 2 0 1 0 2 1 2 1 1 2 1 1 2 3 2 2
−1 −1 0 2 2 0 0 2 2 2 1 1 0 1 1 1 1 1 1 0 1 0 1 1 2 1 1
0 0 1 0 1 0 −1 0 0 −1 −1 0 0 0 0 0 −1 0 0 −1 0 0 0 −1 0 0 0
1 3 1 −1 −2 −2 −2 −3 −3 −3 −4 −2 1 −1 0 −1 −1 −1 0 −1 −2 −1 −1 −3 −3 −2 −2
0 1 0 0 0 −1 −1 0 −1 1 −1 0 0 −1 1 −1 1 0 0 0 −1 0 −1 0 −1 −1 −1
0 1 1 0 1 −1 −1 −1 −1 0 −1 −1 −1 0 1 −1 −1 −1 0 −1 0 −1 −1 −1 −1 0 −1
1 0 −1 −1 −2 1 1 −1 0 0 1 0 0 0 −1 0 0 −1 −1 1 −1 0 0 0 −1 0 0
−1 −2 0 1 −1 0 2 0 1 1 1 0 0 0 0 0 1 0 0 1 2 2 1 3 2 1 2
0 −1 0 0 −1 0 1 −1 1 0 0 0 0 0 −1 0 0 −1 −1 0 1 1 0 1 0 1 1
1 0 1 −1 −1 0 −1 −1 −1 −2 −2 0 0 −2 −1 −1 −1 −1 −2 −1 0 0 −1 −1 −1 0 0
1 0 0 −2 −1 1 0 −1 −1 −1 0 0 −1 −1 −1 −1 −1 −1 −2 0 0 −1 −1 −1 −1 0 −1
0 1 0 −1 1 1 −1 0 −1 0 1 0 −1 1 0 0 −1 0 0 0 0 −2 0 −1 0 0 −1
0 1 0 1 0 0 −1 1 0 −1 −1 0 1 0 0 1 0 1 1 0 −1 0 0 −1 0 0 0
1 0 0 −1 1 1 −1 1 0 0 0 1 0 −1 0 0 0 0 −1 0 −1 −1 −1 −1 −1 0 −1
−1 0 0 2 0 −2 0 0 0 2 0 −1 1 1 1 0 1 1 2 0 0 1 2 1 1 −1 1



σ2 =



2 2 1 −2 0 −1 −1 −2 −2 −1 −1 −1 −1 −1 −1 −2 −2 −2 −2 −1 −1 −2 −2 −2 −3 −2 −3
2 2 2 −1 −1 0 −2 −2 −3 −2 −2 −1 −2 −2 0 −3 −2 −3 −3 −2 0 −2 −2 −2 −2 −2 −2
1 1 1 0 0 0 −1 0 −1 0 −1 0 0 −1 0 −1 0 −1 −1 0 −1 0 −1 0 −1 −1 −1
−1 −1 −1 0 0 −1 2 0 2 −1 0 −1 1 1 0 1 0 1 2 0 −1 1 1 −1 0 0 0
−1 0 −1 0 1 0 2 0 2 0 1 0 0 1 1 1 1 1 2 1 0 0 −1 0 0 1 −1
0 −1 0 0 2 1 1 1 2 1 2 1 −1 0 0 0 0 0 0 1 1 0 −1 1 1 2 0
0 0 1 0 0 0 1 −1 0 0 0 0 −1 −1 0 −1 0 −1 −1 0 1 1 −2 1 −1 1 0
1 1 1 −1 −2 1 −1 −1 −3 −1 −1 0 0 −2 0 −1 0 −1 −2 0 0 0 −1 0 −1 −1 0
0 0 0 1 1 1 −1 2 0 1 1 1 0 0 0 0 0 1 0 0 1 0 1 1 2 0 1
0 0 1 1 0 1 −1 0 0 1 0 1 −1 0 0 0 0 −1 −1 0 1 0 −1 1 0 2 1
1 1 0 −1 −1 −2 −2 −1 −2 −2 −3 −2 1 0 0 −1 −1 −1 0 −2 −3 −1 1 −3 −2 −4 −2
−1 −2 0 1 −1 −1 1 0 1 0 0 0 1 1 −1 1 0 1 1 0 1 2 3 1 2 1 3
0 0 1 0 0 −2 −1 −1 −1 −1 −2 −1 0 0 0 −1 −1 −1 0 −2 −1 1 1 −1 −1 −2 0
0 1 1 −1 0 −1 0 −1 −2 −1 −1 −1 −1 −1 0 −2 −1 −1 −1 −1 0 1 −1 0 −1 −2 −1
−1 1 0 1 0 −1 −1 0 −1 0 −1 −1 0 1 1 0 0 0 1 −1 0 0 1 0 0 −1 0
0 1 −1 1 0 0 0 0 1 1 0 0 0 1 1 1 1 0 1 1 −1 −1 −1 0 −1 1 −1
1 1 0 −2 0 1 0 0 −1 −1 0 0 0 −2 0 −1 0 0 −1 1 −1 −1 −2 −1 −1 −1 −2
0 1 0 0 2 0 0 1 0 1 1 0 −1 0 1 −1 0 0 0 0 0 −1 −1 0 0 −1 −2
1 −2 0 0 −1 1 0 0 1 1 1 1 1 0 −2 1 0 0 −1 1 1 0 1 1 1 2 2
−3 −2 −2 2 −1 1 3 2 3 1 2 2 2 2 0 4 3 4 3 2 2 3 3 3 4 3 4
−2 −1 −1 1 −1 1 0 1 1 1 1 1 2 2 0 3 2 2 2 2 1 1 3 2 3 2 3
−1 1 0 0 −1 −1 −2 −1 −1 −1 −2 −1 1 1 0 1 0 0 1 0 −1 −1 1 −1 0 0 0
0 0 0 −1 0 1 −1 0 0 −1 0 0 1 0 0 1 0 0 0 1 0 −2 1 −1 1 1 0
2 0 1 −1 2 0 0 0 0 0 1 0 −2 −1 0 −2 −2 −2 −2 −1 0 −2 −1 −1 −1 −1 −2
1 1 1 0 0 −2 −1 −2 −1 0 −2 −1 −1 −1 0 −2 −1 −2 −1 −2 −1 0 −2 −1 −3 −1 −1
2 2 2 −3 −1 −1 −3 −3 −4 −3 −3 −2 −1 −2 −1 −3 −3 −3 −3 −2 −2 −3 −1 −4 −3 −3 −3
0 0 −1 1 0 1 3 1 1 1 2 1 −1 0 0 0 1 1 0 0 2 2 −2 2 0 0 0


Figure 2: Generators σ1 and σ2 of F4,E(Z) as 27× 27 matrices in the basis B of JZ
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s o(cs) i(cs) s o(cs) i(cs) s o(cs) i(cs)

(1,0,0,0,0) 1 (27,351,2925,52) (2,1,1,0,1) 9 (3,3,0,1) (4,4,2,0,1) 20 (4,3,-8,0)
(0,0,0,0,1) 2 (-5,-1,45,20) (0,1,0,1,2) 10 (-2,1,0,6) (7,0,1,1,3) 20 (4,9,16,4)
(0,1,0,0,0) 2 (3,-9,-35,-4) (0,2,0,1,1) 10 (0,-1,0,0) (2,1,3,1,2) 21 (0,0,2,0)
(0,0,1,0,0) 3 (0,0,9,-2) (4,2,0,0,1) 10 (10,49,160,10) (4,2,1,2,1) 21 (2,1,-1,0)
(1,0,0,0,1) 3 (0,0,9,7) (0,0,0,1,4) 12 (-4,0,21,15) (0,4,0,1,6) 24 (-2,0,3,7)
(1,1,0,0,0) 3 (9,36,90,7) (0,1,0,2,1) 12 (-1,2,-2,1) (0,6,0,1,4) 24 (0,-2,-1,1)
(0,0,0,1,0) 4 (-1,3,-3,0) (0,2,0,1,2) 12 (-1,0,0,3) (1,2,3,2,1) 24 (0,0,3,-1)
(0,1,0,0,1) 4 (-1,-1,1,4) (0,4,0,1,0) 12 (2,-6,-15,-3) (2,4,2,1,2) 24 (1,-2,-2,-1)
(1,0,1,0,0) 4 (3,3,1,0) (1,0,3,0,1) 12 (0,0,5,-1) (3,1,3,1,3) 24 (0,0,1,1)
(2,0,0,0,1) 4 (7,27,77,8) (1,1,1,1,1) 12 (0,0,1,0) (3,5,1,1,2) 24 (2,-2,-7,-1)
(2,1,0,0,0) 4 (15,111,545,20) (1,3,1,0,1) 12 (2,-4,-11,-2) (4,0,2,1,5) 24 (-1,0,2,5)
(1,1,0,0,1) 5 (2,1,0,2) (1,4,1,0,0) 12 (3,-6,-26,-3) (4,2,2,1,3) 24 (1,0,0,1)
(0,0,0,1,1) 6 (-2,2,-3,5) (2,0,0,1,3) 12 (-2,0,5,8) (4,2,4,1,0) 24 (2,0,-1,-1)
(0,1,0,0,2) 6 (-3,0,10,11) (2,0,2,1,0) 12 (1,0,2,-1) (6,2,0,3,1) 24 (3,4,2,1)
(0,1,0,1,0) 6 (0,0,1,-1) (2,1,0,1,2) 12 (0,0,1,3) (6,2,4,0,1) 24 (4,6,3,1)
(0,2,0,0,1) 6 (1,-4,-6,-1) (2,2,0,1,1) 12 (2,0,-3,0) (7,2,1,1,3) 24 (4,8,11,3)
(1,0,1,0,1) 6 (0,0,1,2) (2,4,0,0,1) 12 (4,0,-19,-1) (2,4,2,1,4) 28 (0,-1,0,1)
(1,1,1,0,0) 6 (3,0,-8,-1) (3,0,1,1,1) 12 (2,2,1,1) (3,4,1,3,1) 28 (1,-1,-1,-1)
(2,0,0,1,0) 6 (4,8,9,2) (3,3,1,0,0) 12 (6,12,5,2) (2,4,6,0,1) 30 (1,-2,1,-2)
(2,1,0,0,1) 6 (6,18,37,5) (4,0,2,0,1) 12 (5,12,18,3) (3,6,1,1,4) 30 (1,-2,-3,0)
(3,0,1,0,0) 6 (12,72,289,14) (4,1,0,0,3) 12 (3,6,14,5) (6,1,0,5,1) 30 (1,1,0,0)
(4,0,0,0,1) 6 (16,128,681,23) (5,0,1,1,0) 12 (8,32,85,7) (6,4,2,2,1) 30 (3,2,-3,0)
(4,1,0,0,0) 6 (21,216,1450,35) (6,1,0,0,2) 12 (11,62,238,13) (8,0,2,1,6) 30 (1,1,4,4)
(1,0,0,1,1) 7 (-1,1,-1,3) (2,1,1,1,1) 13 (1,0,0,0) (12,1,0,3,2) 30 (7,25,60,6)
(2,1,1,0,0) 7 (6,15,20,3) (2,2,2,0,1) 14 (2,-1,-4,-1) (1,4,3,4,1) 36 (0,0,2,-1)
(0,0,0,1,2) 8 (-3,1,5,10) (4,1,0,1,2) 14 (3,5,7,3) (2,8,2,1,4) 36 (1,-3,-4,-1)
(0,1,0,1,1) 8 (-1,1,-1,2) (1,0,2,1,2) 15 (-1,1,0,2) (4,6,2,1,7) 40 (0,-1,0,2)
(0,2,0,1,0) 8 (1,-3,-3,-2) (4,2,1,1,0) 15 (5,10,9,2) (8,2,6,1,3) 40 (2,1,0,0)
(1,1,1,0,1) 8 (1,-1,-1,0) (1,1,3,1,1) 18 (0,0,4,-1) (1,6,5,1,5) 42 (0,-1,1,0)
(1,2,1,0,0) 8 (3,-3,-17,-2) (2,2,2,1,1) 18 (1,-1,0,-1) (10,2,4,1,6) 42 (2,2,2,2)
(2,0,0,1,1) 8 (1,1,1,2) (4,1,0,1,4) 18 (0,0,4,5) (1,12,7,2,3) 60 (1,-3,-2,-2)
(2,2,0,0,1) 8 (5,9,5,2) (6,2,2,0,1) 18 (7,23,48,5) (6,4,6,1,12) 60 (-1,0,1,4)
(3,1,1,0,0) 8 (9,39,111,8) (2,4,2,1,0) 20 (2,-3,-8,-2) (10,2,10,1,6) 60 (1,0,1,0)
(1,1,0,1,1) 9 (0,0,0,1) (3,0,1,3,1) 20 (0,1,0,0) (11,12,1,3,5) 60 (3,1,-6,0)

Table 4: Kac coordinates, Orders and invariants i (defined in §3.5) of the rational torsion
conjugacy classes of F4

97



s n1(s) n2(s) s n1(s) n2(s)

(1,0,0,0,0) 1 1 (1,1,1,1,1) 435456000 105670656
(0,0,0,0,1) 723 819 (1,3,1,0,1) 101606400 0
(0,1,0,0,0) 459900 68796 (2,0,0,1,3) 1612800 0
(0,0,1,0,0) 6540800 2283008 (2,0,2,1,0) 24192000 13208832
(1,0,0,0,1) 121920 139776 (2,1,0,1,2) 43545600 0
(1,1,0,0,0) 268800 34944 (2,2,0,1,1) 14515200 17611776
(0,0,0,1,0) 249480 137592 (2,4,0,0,1) 4112640 0
(0,1,0,0,1) 2835000 0 (3,0,1,1,1) 7257600 0
(1,0,1,0,0) 14968800 3302208 (3,3,1,0,0) 4838400 0
(2,0,0,0,1) 23400 58968 (4,0,2,0,1) 14515200 4402944
(2,1,0,0,0) 37800 0 (5,0,1,1,0) 3628800 0
(1,1,0,0,1) 1741824 0 (2,1,1,1,1) 0 48771072
(0,0,0,1,1) 497280 0 (2,2,2,0,1) 223948800 11321856
(0,1,0,1,0) 44150400 8805888 (4,2,1,1,0) 34836480 0
(0,2,0,0,1) 10483200 2201472 (1,1,3,1,1) 232243200 0
(1,0,1,0,1) 74995200 17611776 (2,2,2,1,1) 154828800 105670656
(1,1,1,0,0) 67737600 8805888 (6,2,2,0,1) 19353600 0
(2,0,0,1,0) 1881600 2935296 (2,4,2,1,0) 87091200 0
(2,1,0,0,1) 604800 0 (4,4,2,0,1) 52254720 0
(3,0,1,0,0) 806400 0 (2,1,3,1,2) 199065600 30191616
(4,0,0,0,1) 6720 0 (4,2,1,2,1) 0 60383232
(1,0,0,1,1) 0 4313088 (0,4,0,1,6) 7257600 0
(2,1,1,0,0) 24883200 539136 (0,6,0,1,4) 21772800 0
(0,0,0,1,2) 272160 0 (1,2,3,2,1) 174182400 0
(0,1,0,1,1) 10886400 0 (2,4,2,1,2) 174182400 52835328
(0,2,0,1,0) 22680000 6604416 (3,1,3,1,3) 261273600 0
(1,1,1,0,1) 342921600 0 (3,5,1,1,2) 87091200 0
(1,2,1,0,0) 32659200 0 (4,2,2,1,3) 58060800 52835328
(2,0,0,1,1) 5443200 6604416 (4,2,4,1,0) 65318400 0
(2,2,0,0,1) 5715360 0 (6,2,4,0,1) 50803200 0
(3,1,1,0,0) 5443200 0 (2,4,2,1,4) 149299200 22643712
(1,1,0,1,1) 77414400 0 (2,4,6,0,1) 34836480 0
(2,1,1,0,1) 19353600 35223552 (6,4,2,2,1) 139345920 0
(0,2,0,1,1) 38320128 0 (2,8,2,1,4) 116121600 0
(4,2,0,0,1) 1741824 0 (4,6,2,1,7) 104509440 0
(0,2,0,1,2) 29030400 8805888 (8,2,6,1,3) 104509440 0
(0,4,0,1,0) 10886400 0 (6,4,6,1,12) 69672960 0
(1,0,3,0,1) 47174400 0

Table 5: Kac coordinates of the conjugacy classes of F4 whose intersections with F4,I(Z) and
F4,E(Z) are not both empty
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λ d(λ) λ d(λ) λ d(λ) λ d(λ) λ d(λ)

(0,0,0,2) 1 (0,0,1,9) 7 (0,1,1,7) 7 (0,0,0,13) 8 (2,0,4,1) 13
(0,0,0,3) 1 (0,0,2,7) 6 (0,1,2,5) 9 (0,0,1,11) 15 (2,1,0,6) 16
(0,0,0,4) 1 (0,0,3,5) 6 (0,1,3,3) 14 (0,0,2,9) 20 (2,1,1,4) 17
(0,0,2,0) 1 (0,0,4,3) 4 (0,1,4,1) 4 (0,0,3,7) 27 (2,1,2,2) 25
(0,0,0,5) 1 (0,0,5,1) 1 (0,2,0,6) 11 (0,0,4,5) 34 (2,1,3,0) 8
(0,0,1,3) 1 (0,1,0,8) 2 (0,2,1,4) 9 (0,0,5,3) 30 (2,2,0,3) 4
(0,0,0,6) 3 (0,1,1,6) 3 (0,2,2,2) 15 (0,0,6,1) 14 (2,2,1,1) 9
(0,0,2,2) 1 (0,1,2,4) 4 (0,2,3,0) 2 (0,1,0,10) 11 (2,3,0,0) 6
(0,0,0,7) 1 (0,1,3,2) 3 (0,3,0,3) 3 (0,1,1,8) 23 (3,0,0,7) 1
(0,0,1,5) 1 (0,1,4,0) 1 (0,3,1,1) 3 (0,1,2,6) 39 (3,0,1,5) 9
(0,0,2,3) 1 (0,2,0,5) 1 (0,4,0,0) 6 (0,1,3,4) 44 (3,0,2,3) 7
(0,0,0,8) 4 (0,2,1,3) 3 (1,0,0,10) 3 (0,1,4,2) 37 (3,0,3,1) 8
(0,0,1,6) 1 (0,2,2,1) 1 (1,0,1,8) 7 (0,1,5,0) 13 (3,1,0,4) 12
(0,0,2,4) 1 (0,3,0,2) 2 (1,0,2,6) 10 (0,2,0,7) 11 (3,1,1,2) 7
(0,0,4,0) 2 (1,0,0,9) 1 (1,0,3,4) 11 (0,2,1,5) 32 (3,1,2,0) 8
(0,0,0,9) 4 (1,0,1,7) 3 (1,0,4,2) 8 (0,2,2,3) 36 (4,0,0,5) 2
(0,0,1,7) 2 (1,0,2,5) 2 (1,0,5,0) 4 (0,2,3,1) 26 (4,0,1,3) 3
(0,0,2,5) 1 (1,0,3,3) 3 (1,1,0,7) 2 (0,3,0,4) 21 (4,0,2,1) 2
(0,0,3,3) 2 (1,0,4,1) 1 (1,1,1,5) 9 (0,3,1,2) 21 (4,1,0,2) 4
(0,1,3,0) 1 (1,1,0,6) 3 (1,1,2,3) 8 (0,3,2,0) 14 (4,1,1,0) 1
(0,3,0,0) 1 (1,1,1,4) 2 (1,1,3,1) 9 (0,4,0,1) 5 (5,0,1,1) 1
(1,1,0,4) 1 (1,1,2,2) 4 (1,2,0,4) 8 (1,0,0,11) 3 (5,1,0,0) 3
(3,1,0,0) 1 (1,2,1,1) 2 (1,2,1,2) 5 (1,0,1,9) 13
(0,0,0,10) 5 (1,3,0,0) 1 (1,2,2,0) 5 (1,0,2,7) 20
(0,0,1,8) 4 (2,0,0,7) 1 (1,3,0,1) 1 (1,0,3,5) 32
(0,0,2,6) 6 (2,0,1,5) 2 (2,0,0,8) 5 (1,0,4,3) 26
(0,0,4,2) 3 (2,0,2,3) 1 (2,0,1,6) 4 (1,0,5,1) 21
(0,0,5,0) 1 (2,0,3,1) 1 (2,0,2,4) 10 (1,1,0,8) 18
(0,1,1,5) 1 (2,1,0,4) 2 (2,0,3,2) 4 (1,1,1,6) 27
(0,1,3,1) 1 (2,1,1,2) 1 (2,0,4,0) 5 (1,1,2,4) 46
(0,2,0,4) 1 (2,1,2,0) 1 (2,1,1,3) 5 (1,1,3,2) 31
(0,2,2,0) 1 (3,0,1,3) 1 (2,1,2,1) 2 (1,1,4,0) 20
(1,0,0,8) 1 (3,1,0,2) 1 (2,2,0,2) 8 (1,2,0,5) 10
(1,0,1,6) 1 (0,0,0,12) 13 (3,0,0,6) 4 (1,2,1,3) 28
(1,0,2,4) 1 (0,0,1,10) 6 (3,0,1,4) 3 (1,2,2,1) 16
(1,0,3,2) 1 (0,0,2,8) 15 (3,0,2,2) 3 (1,3,0,2) 18
(1,2,0,2) 1 (0,0,3,6) 15 (3,0,3,0) 2 (1,3,1,0) 2
(2,0,0,6) 2 (0,0,4,4) 15 (3,2,0,0) 2 (2,0,0,9) 4
(2,0,2,2) 1 (0,0,5,2) 4 (4,0,0,4) 3 (2,0,1,7) 12
(2,2,0,0) 1 (0,0,6,0) 11 (4,0,2,0) 2 (2,0,2,5) 16
(0,0,0,11) 5 (0,1,0,9) 2 (6,0,0,0) 3 (2,0,3,3) 21

Table 6: The nonzero d(λ) for λ = (λ1, λ2, λ3, λ4) such that 2λ1 + 3λ2 + 2λ3 + λ4 ≤ 13
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n d1(n) d2(n) n d1(n) d2(n) n d1(n) d2(n) n d1(n) d2(n)

1 0 0 11 4 1 21 83 209 31 4112 24425
2 1 0 12 8 5 22 130 413 32 6294 38234
3 1 0 13 6 2 23 169 590 33 8904 54760
4 1 0 14 12 8 24 280 1138 34 13284 82989
5 1 0 15 13 8 25 368 1629 35 18664 117447
6 2 1 16 20 18 26 601 2915 36 27332 173760
7 1 0 17 22 22 27 835 4253 37 38024 242971
8 3 1 18 37 58 28 1323 7161 38 54627 351485
9 3 1 19 39 63 29 1868 10455 39 75354 486013
10 4 1 20 67 150 30 2919 16962 40 106332 689219

Table 7: Dimensions d1(n) = dimV
F4,I(Z)
nϖ4 and d2(n) = dimV

F4,E(Z)
nϖ4 for n ≤ 40

n d1(n) d2(n) n d1(n) d2(n)

1 0 0 16 699558 4607562
2 1 0 17 1899450 12528178
3 0 0 18 4951537 32636950
4 1 1 19 12298529 81088431
5 0 1 20 29444006 194120684
6 4 7 21 67821302 447181025
7 2 14 22 151304284 997568542
8 32 136 23 326873722 2155210696
9 84 583 24 686811782 4528418428
10 497 2936 25 1404333622 9259307898
11 1765 11764 26 2802604042 18478677233
12 7111 46299 27 5463354204 36021961176
13 24173 159701 28 10425639768 68740584631
14 80166 526081 29 19491910968 128517811865
15 241776 1594526 30 35762551274 235797459916

Table 8: Dimensions d1(n) = dimV
F4,I(Z)
nϖ3 and d2(n) = dimV

F4,E(Z)
nϖ3 for n ≤ 30
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w(λ) λ dimAVλ(F4) Ψλ(F4)

16 (0,0,0,0) 2
[9]⊕ [17]

∆11[6]⊕ [5]⊕ [9]

20 (0,0,0,2) 1 ∆15[6]⊕ [5]⊕ [9]

22 (0,0,0,3) 1 ∆17[6]⊕ [5]⊕ [9]

24
(0,0,0,4) 1 ∆19[6]⊕ [5]⊕ [9]

(0,0,2,0) 1 Sym2 ∆11[3]⊕∆11[4]⊕∆11[2]⊕ [5]

26
(0,0,0,5) 1 ∆21[6]⊕ [5]⊕ [9]

(0,0,1,3) 1 ∆24,16,8,0[3]⊕ [5]

28
(0,0,0,6) 3

∆
(2)
23 [6]⊕ [5]⊕ [9]

∆26,20,6,0[3]⊕ [5]

(0,0,2,2) 1 ∆26,16,10,0[3]⊕ [5]

30
(0,0,0,7) 1 ∆25[6]⊕ [5]⊕ [9]

(0,0,1,5) 1 ∆28,20,8,0[3]⊕ [5]

(0,0,2,3) 1 ∆28,18,10,0[3]⊕ [5]

32

(0,0,0,8) 4
∆

(2)
27 [6]⊕ [5]⊕ [9]

∆
(2)
30,24,6,0[3]⊕ [5]

(0,0,1,6) 1 ∆30,22,8,0[3]⊕ [5]

(0,0,2,4) 1 ∆30,20,10,0[3]⊕ [5]

(0,0,4,0) 2
Sym2 ∆15[3]⊕∆15[4]⊕∆15[2]⊕ [5]

∆30,16,14,0[3]⊕ [5]

34

(0,0,0,9) 4
∆

(2)
29 [6]⊕ [5]⊕ [9]

∆
(2)
32,26,6,0[3]⊕ [5]

(0,0,1,7) 2 ∆
(2)
32,24,8,0[3]⊕ [5]

(0,0,2,5) 1 ∆32,22,10,0[3]⊕ [5]

(0,0,3,3) 2 ∆
(2)
32,20,12,0[3]⊕ [5]

(0,1,3,0) 1 ∆32,16,14,6,0 ⊕ Spin∆32,16,14,6,0 ⊕ [1]

(0,3,0,0) 1 Sym3 ∆11[2]⊕ Sym2 ∆11[3]⊕∆11[4]⊕ [1]

(1,1,0,4) 1 ∆30,20,10,8,0 ⊕ Spin∆30,20,10,8,0 ⊕ [1]

(3,1,0,0) 1 ∧∗∆19,7 ⊕ (∆19,7 ⊗∆15)⊕∆19,7[2]⊕∆15[2]⊕ [1]

Table 9: Elements of nonempty Ψλ(F4) for the weights λ such that w(λ) ≤ 34
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λ dimAVλ(F4) Ψλ(F4)

(0,0,0,10) 5
∆

(2)
31 [6]⊕ [5]⊕ [9]

∆
(3)
34,28,6,0[3]⊕ [5]

(0,0,1,8) 4
∧∗∆21,13 ⊕ (∆21,13 ⊗∆15)⊕ (∆21,13 ⊗∆11)⊕ (∆15 ⊗∆11)⊕ [1]

∆
(3)
34,26,8,0[3]⊕ [5]

(0,0,2,6) 6
∆

(5)
34,24,10,0[3]⊕ [5]

∆34,24,10,4,0 ⊕ Spin∆34,24,10,4,0 ⊕ [1]

(0,0,4,2) 3
∆

(2)
34,20,14,0[3]⊕ [5]

∆34,20,14,4,0 ⊕ Spin∆32,20,14,4,0 ⊕ [1]

(0,0,5,0) 1 Sym2 ∆17[3]⊕∆17[4]⊕∆17[2]⊕ [5]

(0,1,1,5) 1 ∆34,22,10,6,0 ⊕ Spin∆34,22,10,6,0 ⊕ [1]

(0,1,3,1) 1 ∆34,18,14,6,0 ⊕ Spin∆34,18,14,6,0 ⊕ [1]

(0,2,0,4) 1 ∆34,20,10,8,0 ⊕ Spin∆32,16,14,6,0 ⊕ [1]

(0,2,2,0) 1 ∧∗∆21,13 ⊕ (∆21,13 ⊗∆15)⊕∆21,13[2]⊕∆15[2]⊕ [1]

(1,0,0,8) 1 ∆32,26,8,6,0 ⊕ Spin∆32,26,8,6,0 ⊕ [1]

(1,0,1,6) 1 ∆32,24,10,6,0 ⊕ Spin∆32,24,10,6,0 ⊕ [1]

(1,0,2,4) 1 ∆32,22,12,6,0 ⊕ Spin∆32,22,12,6,0 ⊕ [1]

(1,0,3,2) 1 ∆32,20,14,6,0 ⊕ Spin∆32,20,14,6,0 ⊕ [1]

(1,2,0,2) 1 ψ0

(2,0,0,6) 2 ∆
(2)
30,24,10,8,0 ⊕ Spin∆30,24,10,8,0 ⊕ [1]

(2,0,2,2) 1 ∆30,20,14,8,0 ⊕ Spin∆30,20,14,8,0 ⊕ [1]

(2,2,0,0) 1 ∧∗∆21,9 ⊕ (∆21,9 ⊗∆15)⊕∆21,9[2]⊕∆15[2]⊕ [1]

Table 10: Elements of nonempty Ψλ(F4) for the weights λ such that w(λ) = 36

102



λ F4(λ) λ F4(λ) λ F4(λ) λ F4(λ) λ F4(λ)

(1,2,0,2) 1 (1,2,2,0) 5 (1,1,3,2) 22 (0,1,3,5) 70 (2,0,2,6) 28
(0,1,2,4) 2 (2,0,2,4) 2 (1,1,4,0) 11 (0,1,4,3) 68 (2,0,3,4) 32
(0,1,4,0) 1 (2,0,3,2) 2 (1,2,0,5) 7 (0,1,5,1) 49 (2,0,4,2) 35
(0,2,1,3) 2 (2,1,1,3) 3 (1,2,1,3) 22 (0,2,0,8) 31 (2,0,5,0) 12
(0,3,0,2) 2 (2,1,2,1) 2 (1,2,2,1) 13 (0,2,1,6) 61 (2,1,0,7) 10
(1,0,3,3) 1 (2,2,0,2) 4 (1,3,0,2) 12 (0,2,2,4) 92 (2,1,1,5) 42
(1,1,1,4) 1 (3,0,0,6) 1 (1,3,1,0) 2 (0,2,3,2) 74 (2,1,2,3) 46
(1,1,2,2) 2 (3,0,2,2) 2 (2,0,1,7) 2 (0,2,4,0) 35 (2,1,3,1) 41
(1,2,1,1) 2 (3,2,0,0) 1 (2,0,2,5) 3 (0,3,0,5) 26 (2,2,0,4) 39
(2,1,0,4) 2 (0,0,3,7) 3 (2,0,3,3) 9 (0,3,1,3) 61 (2,2,1,2) 34
(2,1,2,0) 1 (0,0,4,5) 6 (2,0,4,1) 5 (0,3,2,1) 40 (2,2,2,0) 24
(0,0,3,6) 1 (0,0,5,3) 8 (2,1,0,6) 11 (0,4,0,2) 28 (2,3,0,1) 2
(0,0,4,4) 1 (0,0,6,1) 4 (2,1,1,4) 9 (0,4,1,0) 8 (3,0,0,8) 5
(0,0,5,2) 1 (0,1,0,10) 2 (2,1,2,2) 21 (1,0,0,12) 1 (3,0,1,6) 6
(0,0,6,0) 1 (0,1,1,8) 6 (2,1,3,0) 2 (1,0,1,10) 4 (3,0,2,4) 21
(0,1,1,7) 1 (0,1,2,6) 19 (2,2,0,3) 1 (1,0,2,8) 23 (3,0,3,2) 13
(0,1,2,5) 3 (0,1,3,4) 18 (2,2,1,1) 8 (1,0,3,6) 36 (3,0,4,0) 14
(0,1,3,3) 6 (0,1,4,2) 25 (2,3,0,0) 4 (1,0,4,4) 50 (3,1,0,5) 2
(0,1,4,1) 2 (0,1,5,0) 4 (3,0,1,5) 2 (1,0,5,2) 34 (3,1,1,3) 21
(0,2,0,6) 4 (0,2,0,7) 2 (3,0,2,3) 2 (1,0,6,0) 24 (3,1,2,1) 13
(0,2,1,4) 4 (0,2,1,5) 20 (3,0,3,1) 3 (1,1,0,9) 6 (3,2,0,2) 20
(0,2,2,2) 8 (0,2,2,3) 21 (3,1,0,4) 4 (1,1,1,7) 50 (3,2,1,0) 2
(0,2,3,0) 2 (0,2,3,1) 19 (3,1,1,2) 5 (1,1,2,5) 69 (4,0,0,6) 2
(0,3,0,3) 3 (0,3,0,4) 19 (3,1,2,0) 3 (1,1,3,3) 86 (4,0,1,4) 3
(0,3,1,1) 2 (0,3,1,2) 10 (4,1,0,2) 3 (1,1,4,1) 57 (4,0,2,2) 7
(0,4,0,0) 1 (0,3,2,0) 13 (0,0,2,10) 4 (1,2,0,6) 56 (4,0,3,0) 1
(1,0,2,6) 2 (0,4,0,1) 2 (0,0,3,8) 13 (1,2,1,4) 72 (4,1,1,1) 6
(1,0,3,4) 2 (1,0,2,7) 4 (0,0,4,6) 27 (1,2,2,2) 93 (4,2,0,0) 1
(1,0,4,2) 4 (1,0,3,5) 11 (0,0,5,4) 26 (1,2,3,0) 17 (5,0,0,4) 2
(1,1,1,5) 4 (1,0,4,3) 9 (0,0,6,2) 24 (1,3,0,3) 18 (5,0,2,0) 2
(1,1,2,3) 4 (1,0,5,1) 11 (0,0,7,0) 8 (1,3,1,1) 34 (7,0,0,0) 1
(1,1,3,1) 6 (1,1,0,8) 7 (0,1,0,11) 1 (1,4,0,0) 9
(1,2,0,4) 7 (1,1,1,6) 15 (0,1,1,9) 21 (2,0,0,10) 3
(1,2,1,2) 3 (1,1,2,4) 27 (0,1,2,7) 44 (2,0,1,8) 9

Table 11: The nonzero F4(λ) for the weights λ such that w(λ) ≤ 44
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